Тестирование модели уравнения состояния плотных, реагирующих газов

Институт гидродинамики им. М.А. Лаврентьева СО РАН Прууэл Э.Р.

25 февраля 2022 г.

Аннотация

Программный комплекс позволяет проводить расчеты равновесных термодинамических параметров плотных газов и флюидов с учетом межмолекулярных взаимодействий. Протестированный диапазон параметров составляет по температуре – от 100 до 10 000 К и до давления 100 ГПа. Базовыми параметрами для задания условий являются плотность, температура и химический элементный состав исследуемой смеси. Для этих условий вычисляется равновесный химический состав, внутренняя энергия, теплоемкости, показатель адиабаты и скорость звука. В расчетах учтена возможность образования следующих химических компонент: Ar, Ne, He, Kr, N_2 , N, O_2 , O, H_2 , H, H_2O , OH, NH_3 , CO, CO_2 , CH_4 , NH_3 , NO и конденсированной фазы углерода.

Для построения уравнения состояния используются методы молекулярной динамки и статистической физики. При этом, вещество рассматривается как набор точечных объектов (молекул) взаимодействующих с центральным парным потенциалом в форме exp6. Дополнительно молекулы обладают внутренними степенями свободы, энергия которых зависит только от температуры. Для определения давления и полной энергии системы численно решается задача движения небольшого ансамбля частиц (NVT ансамбль из 50-100 молекул), при этом внутренняя энергия системы вычисляется как суммы кинетических энергий молекул и потенциальной энергии взаимодействия, давление вычисляется по Теореме о вириале. Подбор параметров парных потенциалов взаимодействия осуществлялся из условий наилучшего соответствия экспериментальным данным: таблицам термодинамическим величин Американского института стандартов, ударным адиабатам сжиженных газов и параметрам детонационным конденсированных взрывчатых материалов.

Программный комплекс позволяет определять равновесные термодинамические параметры смесей газов при заданной плотности и температуре, рассчитывать ударные и детонационные адиабаты. Для построения ударной адиабаты, численно решается нелинейное уравнение Гюгонио в переменных плотность и температура, при этом, все необходимые параметры (давление и удельная внутренняя энергия) вычисляются описанным выше методом. Параметры детонации определяются из условий Чепмена-Жуге - на ударной адиабате с энерговыделением находится точка с условиями D=u+c, где D скорость фронта, u - массовая скорость, с - равновесная скорость звука.

Программный комплекс позволяет проводить удаленные вычисления в сети интернет по адресу http://ancient.hydro.nsc.ru/chem.

Содержание

1	Выб	бор параметров потенциала	3
2	Одн	окомпонентные смеси	3
	2.1	Ar	3
	2.2	Kr	4
	2.3	Xe	5
	2.4	H_2	6
	2.5	N_2	7
	2.6	O_2	8
	2.7	CO	9
	2.8	CO ₂	10
	2.9	H_2O	11
	2.10	CH ₄	11
	2.11	NH ₃	12
	2.12	Al	13
	2.13	Mg	14
	2.14	Sn	14
	2.15	$\mathbf{Fe} \ldots \ldots$	15
9	Πnc		17
0	2 1	Аммизиная селитра	17
	3.2		11
	0.4		- 10
	22	Эмульсионное вв	19 21
	3.3 3.4	Эмульсионное вв	19 21 23
	3.3 3.4 3.5	Эмульсионное вв	19 21 23 25
	3.3 3.4 3.5 3.6	Эмульсионное вв	19 21 23 25 27
	3.3 3.4 3.5 3.6 3.7	Эмульсионное вв	19 21 23 25 27 20
	 3.3 3.4 3.5 3.6 3.7 3.8 	Эмульсионное вв	19 21 23 25 27 29 31
	 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	Эмульсионное вв	19 21 23 25 27 29 31 33
	3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Эмульсионное вв	19 21 23 25 27 29 31 33 35
	3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Эмульсионное вв	$ 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ 31 \\ 33 \\ 35 \\ 37 $
	3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Эмульсионное вв	$ 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ 31 \\ 33 \\ 35 \\ 37 \\ 30 \\ 30 $
	3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	Эмульсионное вв	$ \begin{array}{r} 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ 31 \\ 33 \\ 35 \\ 37 \\ 39 \\ 41 \\ \end{array} $
	3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	Эмульсионное вв	19 21 23 25 27 29 31 33 35 37 39 41 43
	3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15	Эмульсионное вв	19 21 23 25 27 29 31 33 35 37 39 41 43 45

Список литературы

46

1 Выбор параметров потенциала

	Критическая точка						Кипение	
	Ткр, К	Ркр, МПа	дм ³ /моль	моль/дм 3	$\mathrm{Kr/M}^3$	Тпл	$\mathrm{Kr/M}^3$	
Не	5.19	0.2274	0.05747	17.4	69.6			
Ne	44.4	2.654	0.0417	23.98	479			
Ar								
Kr								
Xe								
H_2	33	1.3	0.065	15.38	30.8			
N ₂								
O_2	154.576	5.043	0.0734	13.624	436	90.19	1141	
CO	132.91	3.499	0.0931	10.7411	300.8			
CO_2	304.20	7.383	0.0940	10.6383	468.1			
CH_4	190.555	4.595	0.0989	10.1112	162.2			
H_2O	647.13	22.06	0.0559	17.89	322			
С	6810	223	0.0188	53.1915	638.9			
C_2H_2	308.33	6.138	0.1197	8.35422	217.5			

2 Однокомпонентные смеси

Изотермы Ar. $T_c = 150.6$ K, $p_c = 4.86$ МПа, $\rho_c = 531$ кг/м³.

Ударная адиабата Ar. $\rho_0=1395~{\rm kr/m^3},\,T_0=83.8~{\rm K}.$

2.2 Kr

Изотермы Kr. $T_c = 209.46$ K, $p_c = 5.52019$ МПа, $\rho_c = 921.8$ кг/м³.

Ударная адиабата $Kr.\
ho_0=2410\ {
m kr/m^3},\ T_0=119\ {
m K}.$

2.3 Xe

$\mathbf{2.5}$ \mathbf{N}_2

Экспериментальные данные по уравнению состояния N_2 : сжатие до давления 2 ГПа [1], сжатие в алмазных наковальнях [2, 3], ударные адиабаты [4, 5]. Модели уравнения состояния [6].

Рис. 1: Зависимости давления от плотности флюида N_2 вдоль изотерм: NIST – [1], Olijnyk – [2], Gregoryanz – [3].

Рис. 2: Ударная адиабата сжиженного азота: SWD – [4], Nellis – [5]. Начальное состояние: $\rho_0 = 0.808 \text{ г/см}^3$, $T_0 = 77.4 \text{ K}$.

2.6 O₂

Экспериментальные данные по уравнению состояния O_2 : [1, 4]. Модели уравнения состояния [7, 8].

Рис. 3: Зависимости давления от плотности флюида O_2 вдоль изотерм: NIST – [1].

Рис. 4: Ударная адиабата сжиженного азота: SWD – [4], Chen – [8], Ree – [7]. Начальное состояние: $\rho_0 = 1.202 \text{ г/см}^3$, $T_0 = 77 \text{ K}$.

2.7 CO

Экспериментальные данные по уравнению состояния СО: [1, 4].

Рис. 5: Зависимости давления от плотности флюида *CO* вдоль изотерм: NIST – [1].

Рис. 6: Ударная адиабата сжиженного CO: Nellis – [eq_co_nellis_1981], Chen – [8], Ree – [7]. Начальное состояние: $\rho_0 = 1.202 \text{ г/см}^3$, $\overline{T_0} = 77 \text{ K}$.

$2.8 \quad \mathrm{CO}_2$

Экспериментальные данные по уравнению состояния CO_2 : [1, 9, 10, 11].

Рис. 7: Зависимости давления от плотности флюида *CO*₂ вдоль изотерм: NIST – [1], Liu – [10].

Рис. 8: Ударная адиабата твердого CO_2 : Zubarev – [9]. Начальное состояние: $\rho_0 = 1.54 \ r/cm^3, T_0 = 196 \ K.$

Рис. 9: Ударная адиабата жидкого CO_2 : Nellis – [11], Schott – [12]. Начальное состояние: $\rho_0 = 1.172 \text{ г/см}^3$, $T_0 = 218 \text{ K}$, $p_0 = 7e5 \text{ Па}$.

$2.9 \quad H_2O$

Экспериментальные данные по уравнению состояния H_2O : [1, 4].

Рис. 10: Зависимости давления от плотности флюида H_2O вдоль изотерм: NIST – [1], Mazevet – [13].

Рис. 11: Ударная адиабата H_2O : SWD – [4], Karahanov – [14], Lyzenga – [15]. Начальное состояние: $\rho_0 = 0.994 \text{ г/см}^3$, $T_0 = 300 \text{ K}$.

$2.10 \quad \mathrm{CH}_4$

2.13 Mg

Ударная адиабата Mg с фиксированным химическим составом.

Ударные адиабаты *Sn* с фиксированным химическим составом для разных начальных плотностей.

Ударные адиабаты *Fe* с фиксированным химическим составом для разных начальных плотностей.

2.15 Fe

Объемная скорость звука и давление от плотности вдоль ударной адиабаты железа.

3 Продукты детонации конденсированных вв

3.1 Аммиачная селитра

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда аммиачной селитры ([NH₄][NO₃]).

Параметры адиабаты разгрузки продуктов детонации аммиачной селитры с начальной плотоностью 0.8 г/см 3 .

3.2 Эмульсионное вв

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда. Состав: 80, 4.67, 12 массовых частей $H_4N_2O_3$, $[CH_2]_n$ – парафин (стеарин $C_{18}H_{36}O_2$), H_2O соответственно. Состав близок к соотношению соответствующему полному окислению компонент – $1H_4N_2O_3 + 1/3CH_2 + 2/3H_2O = 1N2 + 3H_2O + 1/3CO_2$.

Параметры адиабаты разгрузки продуктов детонации BB с начальной плотоностью 1.0 г/см $^3.$

3.3 Тэн

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда тэна ($C_5H_8N_4O_{12}$).

Параметры адиабаты разгрузки продуктов детонации тэ
на с начальной плотоностью 1.77 г/см $^3.$

3.4 Гексоген

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда гексогена ($C_3H_6N_6O_6$).

Параметры адиабаты разгрузки продуктов детонации гексогена с начальной плотоностью 1.80 г/см $^3.$

3.5 Октоген

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда ($C_4 H_8 N_8 O_8$).

Параметры адиабаты разгрузки продуктов детонации октогена с начальной плотоностью 1.90 г/см $^3.$

3.6 Тротил

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда ($C_7H_5N_3O_6$).

Параметры адиабаты разгрузки продуктов детонации тротила с начальной плотоностью 1.640 г/см $^3.$

3.7 Тетрил

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда ($C_7H_5N_5O_8$).

Параметры адиабаты разгрузки продуктов детонации тетрила с начальной плотоностью 1.640 г/см³.

3.8 Тротил/гексоген

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда из смеси 50% тнт + 50% гексоген.

Параметры адиабаты разгрузки продуктов детонации в
в с начальной плотоностью 1.65 г/см $^3.$

3.9 Гексонитростильбент

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда $(C_{14}H_6N_6O_{12})$.

Параметры адиабаты разгрузки продуктов детонации в
в с начальной плотоностью 1.7 г/см $^3.$

3.10 Татб

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда ($C_6H_6N_6O_6$).

Параметры адиабаты разгрузки продуктов детонации татб с начальной плотоностью 1.80 г/см $^3.$

3.11 Нм

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда нитрометана (*CH*₃*NO*₂).

Параметры адиабаты разгрузки продуктов детонации н
м с начальной плотоностью 1.137 г/см $^3.$

3.12 Тнм

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда (CN_4O_8).

Параметры адиабаты разгрузки продуктов детонации т
нм с начальной плотоностью 1.65 г/см $^3.$

3.13 Бтф

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда ($C_6 N_6 O_6$).

Параметры адиабаты разгрузки продуктов детонации бтф с начальной плотоностью 1.8 г/см $^3.$

3.14 ДНТФ

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда DNTF ($C_6N_8O_7$).

Параметры адиабаты разгрузки продуктов детонации ДНТ
Ф с начальной плотоностью 1.75 г/см³.

3.15 CL-20, ГНИВ, HNIW

Параметры детонации Чепмена-Жуге в зависимости от начальной плотности заряда ($C_6H_6N_{12}O_{12}$).

Параметры адиабаты разгрузки продуктов детонации cl-20 с начальной плотоностью 1.9 г/см $^3.$

Список литературы

- Linstrom P. J., Mallard W. G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 [Электронный ресурс]. — DOI: 10.18434/ T4D303. — URL: https://webbook.nist.gov/chemistry.
- 2. Olijnyk H. High pressure x-ray diffraction studies on solid N_2 up to 43.9 GPa // The Journal of Chemical Physics. -1990. T. 93, $\mathbb{N} \ 12. C. \ 8968-8972. DOI: 10.1063/1.459236.$
- 3. High P-T transformations of nitrogen to 170 GPa / E. Gregoryanz [и др.] // The Journal of Chemical Physics. — 2007. — Т. 126, № 18. — С. 184505. — DOI: 10.1063/1.2723069.
- 4. Bushman A. V., Lomonosov I. V., Khishchenko K. V. Shock Wave DataBas [Электронный pecypc]. — URL: www.ihed.ras.ru/rusbank (дата обр. 16.09.2021).
- 5. Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition / W. J. Nellis [и др.] // The Journal of Chemical Physics. 1991. Т. 94, № 3. С. 2244–2257. DOI: 10.1063/1.459895.
- 6. Winey J. M., Gupta Y. M. Complete equation of state for shocked liquid nitrogen: Analytical developments // The Journal of Chemical Physics. 2016. T. 145, № 5. C. 054504. DOI: 10.1063/1.4959770.

- Ross M., Ree F. H. Repulsive forces of simple molecules and mixtures at high density and temperature // The Journal of Chemical Physics. 1980. T. 73, № 12. C. 6146–6152. DOI: 10.1063/1.440106.
- 8. The dissociation and equation of state of dense fluid oxygen at high pressures and high temperatures / Q. F. Chen [μ др.] // The Journal of Chemical Physics. 2008. T. 128, № 10. C. 104512. DOI: 10.1063/1.2837480.
- Зубарев В. Н., Телегин Г. С. Ударная сжимаемость жидкого азота и твердой углекислоты // Доклады Академии наук. — 1962. — Т. 142, № 2. — С. 309–312.
- 10. Liu L.-g. Compression and phase behavior of solid CO₂ to half a megabar // Earth and Planetary Science Letters. - 1984. - T. 71, № 1. - C. 104-110. -ISSN 0012-821X. - DOI: 10.1016/0012-821X(84) 90056-6. - URL: https://www.sciencedirect.com/science/article/pii/0012821X84900566.
- Equation of state of shock-compressed liquids: Carbon dioxide and air / W. J. Nellis [и др.] // The Journal of Chemical Physics. 1991. Т. 95, № 7. С. 5268–5272. DOI: 10.1063/1.461665.
- Schott D. G. L. Shock-compressed carbon dioxide: Liquid measurements and comparisons with selected models // High Pressure Research. 1991. T. 6, № 3. C. 187–200. DOI: 10.1080/08957959108203209.
- 13. Ab initio based equation of state of dense water for planetary and exoplanetary modeling / S. Mazevet [и др.] // Astronomy and Astrophysics. 2019. Т. 621. А128. DOI: 10.1051/0004-6361/201833963.
- Bordzilovskii S., Karakhanov S., Khishchenko K. Thermal Radiation from Water behind the Reflected Shock Wave // Combust Explos Shock Waves. — 2018. — T. 54, № 6. — C. 712–719. — DOI: 0.15372/FGV20180611.
- 15. The temperature of shock-compressed water / G. A. Lyzenga [и др.] // The Journal of Chemical Physics. 1982. Т. 76, № 12. С. 6282–6286. DOI: 10.1063/1.443031.