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Abstract - A consistent LBE model for simulating
the electrohydrodynamic (EHD) phenomena is de-
veloped. The model includes fluid dynamics, electric
charge transport via advection and conduction cur-
rents, and action of electric forces upon space
charges in liquid. Problems with different thermo-
dynamic phases (liquid and gaseous) and with in-
homogeneous electric permittivity and conductivity
can also be simulated, as well as charge injection
and recombination.

1 Introduction

In simulations of EHD problems, following
physical phenomena should be consistently mod-
eled: hydrodynamics, transport of electric charge
carriers, evolution of electric potential distribution,
action of electric field on charged liquid.

The Lattice Boltzmann equation (LBE) meth-
ods [1-3] are widely used for solving the hydrody-
namic Navier-Stokes equations. Because of their
kinetic nature, these methods possess high numeri-
cal stability, and complex boundary conditions are
easy to implement. Multiphase and multicomponent
flows can also be simulated with moderate computa-
tion cost.

Finite-difference methods was previously used
for calculation of charge transfer. In these methods,
the value of charge diffusivity is large enough [4,5].
Moreover, it is not constant and depends on velocity
of fluid u as D =3Adul(h/ At ~|u]) [5). In [5], we

proposed another method to calculate convective
and diffusive charge transport in that charge diffu-
sivity is velocity-independent and can be adjusted.

In present work we used the Lattice Boltzmann
.equation methods for solving the equations for con-
centrations of carriers of electric charge.

2 Equations

Hydrodynamic equations are the continuity
equation

B, -
2 +9(p)=0, (1)

and the Navier-Stokes equation

%’t'—'wng’/} =F +77V2u+(§+g—)graddivu. @)

Here, p is the density of liquid, u is the velocity of
fluid flow, I'Igz = pbap + pugup is the non-
viscous part of the momentum flux tensor.

Equations for concentrations n; of carriers of

electric charge are
on; .. q;
—51' + V(n,-u) = D,-An,- had dlv(lq—l.l b,-niE) +wW; — 1. (3)
1
Here, D; are the diffusivities, b; are the mac-
roscopic effective mobilities of charges carriers g; ;
w; , r; are the rates of ionization and recombination

of charge carriers.
The Poisson’s equation for potential of electric
field ¢ is

div(eVe) = —4mg, E=-Vo, 4
The electric force acting on the space charge
g= g;n; inaliquidis
F=qE=-gVg. &)
The electric current could be expressed as
j=Y (ginu—-D;q;Vn; + bilg;jnE) =
=gu- ZD,-q,-Vni +0E,
Here, the local conductivity o = Zbi|4i|"i depends
on local concentrations of charge carriers and can be
not constant in space and in time.

3 Method of splitting

(6)

To solve the system of equations (1)~(5), the
method of splitting on physical processes [6] is
used. The whole time step is divided into several
stages implemented sequentially. These stages are

1. Modeling of hydrodynamic flows.

2. Simulation of convective transport and diffu-
sion of charge carriers.

3. Calculation of electric potential and charge
transfer due to mobility of charge carriers.

4. Calculation of electrostatic forces acting on
space charges in liquid.

5. Simulation of phase transition or interaction
between immiscible liquids.
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3.1. Modeling of hydrodynamic flows

For simulation of hydrodynamic flows, the
LBE method [1-3] was used. The evolution equa-
tions for single-particle distribution functions
Ny (x,t) have the form

Np(x+cpAt,t+At)= Ny (x,1)+

@)

+(Ng¥ (pu(x,0) = N (x,0))/ 7+ ANy,
where c; are the particle velocities, At is the time
step (lattice vectors are ey =¢;At), AN, are the

changes of distribution functions due to action of
volume forces.
Equilibrium distribution functions are

2
NE9(p,u) = pwk[l+ 3¢ u+ 9exu)’ —3‘%-] ®)

2
Here, p=ZNk and pu=2cka . For the two-
k k
dimensional nine-velocity D2Q9 model [3]

(Jex|=0, 1 or V2 ) on a square lattice (Fig. 1), the
weight coefficients are wy=4/9, w_4 =1/9, and

ws_g =1/36. The reduced relaxation time 7 de-

2
termines the kinematic viscosity v = ;—At-(r -1/2).

6 2 5
4
3l o i1
y
7 4 8
Fig. 1.

The exact difference method (EDM) was spe-
cially developed for LBE [7] to take into account the
action of electric forces on space charges in a liquid

AN, =N (pu+Au)-NF (pu). 9
Here Au=F/p-At is the velocity change due
to body force F during time step Az.

3.2. Convective transport and diffusion of charge
carriers

Equations of convective transport of every type
of charge carriers and their diffusion, ionization and
recombination

on;
—L +V(n;u) = D;An; +w; —1;
ot

(10)

are solved using the method of additional LBE
components with zero mass (passive scalar) [5]
similar to one used in [8].

The evolution equations for distribution functions
Qi (x,t) for every type of charge carriers g; are

O (x+ ¢ AL+ At) = Qi (X,1) -
-(Qu(x.0) - Q) 7;.
Equilibrium distribution functions Q.7 (g,u) de-

(1D

pend on concentrations of every type of charge car-

riers n;q; = ZQk,- and on fluid velocity u
k

2 2
0l (g w)= n,-q,-wk(l +3cu+ g(—cizll)—— —Eg—} (12)

2
Diffusivities D =2§;-(r,~-—l/ 2) can be adjusted

independently changing the relaxation times z;.
The exact values of rates of ionization w; and
recombination 7; of charge carriers in liquids are

unknown, but some discussion and approximate
laws for weakly conductive liquids could be found
in [9].

3.3. Calculation of electric potential and charge
transport due to mobility of charge carriers (con-
ductivity)

A finite-difference method is used to calculate
the electric potential ¢ with charge transfer due to

mobility of charges carriers in electric field. Trans-
port of electric charge via mobility of charges carri-
ers is computed simultaneously with the solution of
Poisson equation for potential of electric field. The
time-implicit finite-difference equations for the con-
centrations of charge carriers were substituted into
the Poisson equation as it was done in [10]. The re-

sulting equations for all concentrations of charge

n+l

carriers n"*! and values of potential ¢"*! at the

next time step n +1

nf*l = pl 4 rdiv —q-i—bin}'+1V¢)"+l ,
la (13)
div(eVe"t) = -4y g,

were solved by the method of iterations.

Charge injection from the surface of electrodes
can be modeled introducing certain electric conduc-
tivity near electrodes.

3.4. Action of electrostatic forces on space charges
in liquid

The total charge density in the node g was cal-
culated from equation
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It takes into account both free space charge density
and charge density due to non-uniform polarization
of dielectrics. Electric field E acting on this charge
was calculated as numerical derivative of electric
potential. In finite-difference form we have

Fy ==q;, j(@is1,j — Pi-1,;)/ 20,
Fy ==q; j(@i j+1~ @i, j-1)/ 2h.
Use of the central differences excludes the contribu-
tion of charge density in given site to the electric

field there, hence, the self-action of charge is
avoided.

15)

3.5. Phase transitions

Phase transitions are simulated in LBE method
using the method of Shan and Chen [11]. To de-
scribe the phase transition in this model, the attrac-
tive forces were introduced between every neighbor
nodes. For two-dimensional case we have

F(x) =y (p(x)))_ Gy (p(x +ep))e -
k
Here G, >0 are the coefficients that are different

(16)

for basic and diagonal directions, w(p) is an

increasing function of density (effective mass). We
used the following function as suggested in [11]

w(p) = po(l—exp(-p/ po))- (17)
To ensure the isotropy of space, coefficients for the
force must satisfy the equation Gy = Gy/4 . Here,
Gy is the coefficient for basic directions, and G, is

the coefficient for diagonal directions. In this case,
the equation of state for isothermal model is

3
P= p6—560w2 (P), (18)

where 8 =1/3. The critical point is G« =4/9 and
Py = poIn2. For the values of Gg > Go., coexis-
tence of dense (liquid) and rarefied (gaseous) phases
is possible.

3.6. Simulation of immiscible liquids

For simulations with two immiscible liquids,
we used the method of Shan and Chen [11]. In the
simplest case, the interactions between every
neighbor nodes were introduced in form

F,(x) =w(ps (X)) . Grsa¥W(pa(x+ep))eg , (19)
Ak

Here, we denote the components by the indexes s
and A. In the case of two liquids, every index can
take values 1 or 2. p, are the densities of compo-

nents at the nodes.
The total fluid density at a node depends on

densities of components as p =zsps , where

Ps =Zstk' Here, N, are the single-particle

distribution functions for each component. The total
momentum at a node is pu = Zs Psug , Where u is

the mean velocity, psu; =ZN skCx are the mo-
menta of components. The interaction forces change
the velocity of each component at the node
Au, =F At/ p;, that should be taken into account
in the collision operator for every component
Q4 (ps,uy). In our simulations, we used the same
relaxation time 7 for different liquids. It means that
the viscosities of these liquids were equal.

In simulations with two immiscible liquids
without phase transition, we used Gy, =0,
Gksﬂ. = Gk/ls >0 s Glsl = GOs/l /4 and the following

simplest function yw(p)=p.

4 Results

We investigated deformation and fragmentation
of conductive gas bubbles in electric field, the dy-
namics of gas bubbles caused by electrostriction,
and deformation of liquid drops with electric per-
mittivity different from this of main liquid.

a)o=0.5

TR

t=0 1000 200 300 400 500 600 700
b)o =0.375

~100 200 300 400 500 600 700 770 850
c)g=0.2

=100 200 300 400 500 600 700 800 850

Fig. 2. Deformation and breakup of vapor bubble in elec-
tric field at different conductivity inside the bubble. Lat-
tice size 250x65.
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The electric strength of gases is much lower
than that of liquids. Hence, the electric breakdown
occurs when vapor bubbles grow to a certain critical
size. After breakdown, the bubble becomes conduc-
tive, and it is deformed under the action of electric
field. The dynamics of bubble deformation is shown
in Fig. 2. Dark color corresponds to lower density.

At comparatively high conductivity, bubble
grows and elongates (see Fig. 2,a). Then, a neck
arises at the equator, and bubble breaks into two
smaller ones.

At lower conductivity inside the bubble, the de-
formation proceeds slower, and two necks can ap-
pear resulting in the emission of two bubbles from
the poles of the original one (Fig. 2,b). The central
bubble has practically no charge and, hence, it col-
lapses rapidly.

Finally, in the case of even lower conductivity,
the external pressure prevails, and the bubble first
elongates and then collapses (Fig. 2,c).

Similar processes are observed at the break-
down of dielectric liquids [12]. At the incomplete
breakdown, the streamer channel decays to the chain
of bubbles, which then disappears rapidly.

a b c d
o o ® ®
-

f g h
®

Fig. 3. Deformation of vapor bubble due to electrostric-
tion. = 60 (a), 100 (b), 140 (c), 180 (d), 220 (e), 260
(), 300 (g), 340 (h).

Usually, electric permittivity of substances de-
pends on density. This leads to deformation of sam-
ples in electric field (electrostriction). We simulated
the evolution of a bubble in dielectric liquid with
permittivity £ =1+ p/p, .

Results are shown in Fig. 3. Dark color corre-
sponds to lower density. Electrodes were placed at
the top and bottom boundaries of computation area,
with periodic boundary conditions at the side
boundaries. When the voltage was applied, the bub-
ble gradually flattened and later broke into two
smaller ones. The total volume of the bubble also
decreased due to the compression by electrostriction
forces.

The dynamics of liquid drops with electric
permittivity & different from permittivity of main
dielectric liquid (& =1) in external electric field was
studied (Fig. 4 and Fig. 5).

1o

Fig. 4. Liquid drop with electric permittivity different
from one of main liquid dielectric in external electric

field. & = 100, E, =0.035. £= 0 (a), 100 (b), 200 (c),
300 (d), 400 (e), 500 (f), 600 (g), 700 (h).

() h

f g

° ) | I
g=20
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Fig. 5. Liquid drop with electric permittivity different
from one of main liquid dielectric in external electric

field. £ = 20, E, =0.1. = 0 (a), 100 (b), 200 (c), 300
(d), 400 (e), 500 (f), 600 (g), 700 (h).

In the case shown in Fig. 5, the vortices are
more pronounced than for simulation shown in
Fig. 4 despite the lower value of . The reason of
this is the higher value of external electric field E,
resulting in higher electric forces that are propor-

NY ¢? q

(2% PR

tional to £E 3 (e1-¢€)/g.

5 Discussion and conclusions

A new method for simulating the EHD phe-
nomena is developed. It provides the consistent
model of all physical processes involved. Hydrody-
namic flows and convective and diffusive transport
of charge carriers are simulated by the LBE scheme,
as well as interaction of liquid components and
phase transitions and action of electric forces on a
charged liquid. Evolution of potential distribution
and conductive charge transport are calculated using
the finite difference method.

Simulations show the great potential of the
method especially for problems with free boundaries
(systems with vapor bubbles and multiple compo-
nents with different electric properties).
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