Available online at www.sciencedirect.com

SciVerse ScienceDirect PI"OCEdiCI

Computer Science

ELSEVIER Procedia Computer Science 18 (2013) 2512 — 2520

International Conference on Computational Science, ICCS 2013
Simulating mobile dendrites in a flow
Dmitry Medvedev**?, Fathollah Varnik?, Ingo Steinbach?

“Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr University Bochum, Stiepeler Str. 129, 44780, Bochum, Germany
b Lavrentyev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Lavrentyev prosp. 15, 630090, Novosibirsk, Russia

Abstract

We propose a scheme for simulation of the solute-driven dendritic solidification which accounts for the flows
of liquid and motion of growing dendrites. The scheme is based on the multiphase-field method for calculating the
solidification and the lattice Boltzmann method to simulate the fluid flows. Motion and rotation of solid grains is
possible.
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1. Introduction

Dendritic solidification is a phenomenon with immense technical and theoretical importance. Its technical impor-
tance clearly stems from the fact that the overwhelming majority of all metallic workpieces have once in their lifetime
undergone solidification with a dendritic structure. In fact: this transformation allows to encapsulate the heavy seg-
regation, which is inevitably connected to alloy solidification, between the arms of the dendrite on the micrometer
scale and thus limits macrosegregation to a considerable extend. Without this feature, no large scale casting could
be produced with a controllable alloy composition throughout the casting. The formation of dendritic arms itself is
an intrinsic feature of alloy solidification, where the growing interface is morphologically unstable [1] and the den-
dritic structure evolves from self-organization. The basic theories of dendritic solidification [2, 3, 4, 5, 6] deal with
purely diffusive conditions. Under terrestrial conditions it is, however, evident that there is buoyancy driven flow
which affects the growth conditions of the dendrites significantly [7]. Recently, a scaling theory was developed by
one of the authors [8] which predicts a decreasing or increasing primary spacing dependent on the orientation of flow
with respect to the vector of gravity: there is a complex interaction of flow with dendritic growth since the dendritic
network will limit the flow through friction at the solid structures on the one hand. On the other hand, flow increases
transport of solute and thereby influences the growth of dendrites. These mutual interactions can be self-accelerating
or self-restricting dependent on the direction of flow. The reader is referred to [8] for more details. In that work the
solid dendrites were assumed to be rigidly fixed, e.g., being attached to the bottom of the mold in a directional solidi-
fication furnace. An even more challenging task is the case of equiaxed dendrites freely floating in a melt. There will
be different situations, e.g., upward buoyancy of solutal plumes and downward sedimentation of dendrites due to the
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density difference between solid and liquid. Also the dendrites will rotate, as described in [9]. To be able to investigate
this complex behavior more closely, we aim to develop a phase-field model of solutal solidification combined with
a robust fluid flow solver. The lattice-Boltzmann (LB) method is presently a well-established tool to simulate fluid
flows, especially flows in complex geometries [10, 11, 12].

The first combinations of the Phase field approach with the lattice Boltzmann method to include hydrodynamic
flow effects on the solidification phenomena goes back to the studies of Fabritiis and coworkers [13] and Miller and
coworkers [14, 15, 16]. Guided by one of the well known lattice Boltzmann pioneers, Sauro Succi, these authors
investigated dendritic growth in a pure melt in externally imposed flows. Results obtained by these simulations
showed the great potential of the new combined method in accurately dealing with the mutual interplay of an evolving
complex solidification pattern on the one hand and the flow around this pattern on the other hand, the latter influencing
back the solidification process via the transport of heat which is created at the solidification front. These promising
investigations motivated additional studies of the topic by independent research groups, who extended the range of
the applications of the method to binary alloys and other flow situations [17, 18, 19].

In all these studies, however, the solid phase was assumed to be immobile. The challenge to be overcome is
to include rigid-body motion and rotation in the model. In the present work, we address this issue firstly in a 2-
dimensional approximation. Generalization of the proposed approach to three dimensions is straight-forward and is
left to future work.

2. Numerical model

2.1. Phase field method

The phase-field method has now become a method of choice to simulate the dendritic solidification. Its main
advantage is the absence of the need of front tracking, together with the possibility of keeping good accuracy at
moderate computational cost, if a thin-interface approach such as the one discussed by Karma and Rappel [20, 21] is
employed. The method has been used for the simulation of thermal-driven solidification from a pure melt as well as
the solute-driven solidification of alloys [22].

In the present work, we use the multi-phase field model described in [23, 24]. The free energy functional consists
of several terms corresponding, e.g., to the interfacial 2 and chemical f¢7 free energy.

F:f(fGB+fC”+...)dV. (1)
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Other terms like elastic, magnetic and electric energy may be added depending on the problem.
In this work, we use only one phase field ¢ which represents the fraction of the solid phase in a node. The fraction
of the liquid phase is ¢; = 1 — ¢. The interfacial (or grain-boundary) free energy density is given by
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where o (n) is the anisotropic surface energy, 1 is the width of the interface between two phases, n = V¢/|V¢| is the
local normal to the interface.
The chemical part of the free energy is built from bulk free energies of the individual phases

F = W@ F(C) + h(1 = §) il C)) + p(C = ($sCs + $iC1)). 3)

Here, C is the overall concentration of the solute, and f,(Cy) and f;(C;) are the chemical bulk free energy densities
of the solid and the liquid pahses which depend on the concentrations C and C; in the solid and liquid phases,
respectively, u is the generalized chemical potential or diffusion potential of solute introduced as a Lagrange multiplier
to conserve the solute mass balance between the phases, C = ¢,C + ¢;C;. The function # is
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Using the free energy functional (1), the kinetic equations for the phase field and concentration variables are
constructed

‘ SF
b= My, )
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with the interface mobility M, and the chemical mobility matrix M..
The kinetic equation for the phase field (5) can be explicitly rewritten as

+ % N ¢)AG} . (7)

The second term in the left hand side represents the advection of phase field with the velocity of solid, u;.
The evolution equation for the concentration of solute becomes
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with the diffusion coefficient in the liquid D; and no diffusion in the solid (one-sided model is used). Here, the
advection fluxes with the velocities u; in the liquid phase and u; in the solid phase are introduced. Last term in the
right-hand side is the antitrapping current which is necessary to eliminate the effect of numerical solute trapping due
to diffusiveness of the interface. It is expressed as

.7 . Vo
= 2\ =) (C1 = Cy) pa—. 9
Jur = NIT=0) (1= Cod ©)

We use a linear phase diagram with the constant partition coefficient k = ¢;/c;. The driving force AG in the Eq.
(5)is AG = AS(T,,, — T — myc;) where AS is the entropy difference between phases, T, is the melting temperature
of a pure substance, and my; is the liquidus slope. In order to suppress the kinetic undercooling, we set the effective
mobility M, in the Eq. (5) to
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2.2. The lattice Boltzmann method

To obtain the fluid velocity, the Navier-Stokes equation should be solved
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with the liquid density py and the kinematic viscosity v. The last term in the right-hand side is the friction between
liquid and the solid which guarantees a no-slip condition in the thin-interface limit. The numerical coefficient 7" =
145.8 was fitted from a calculation of Poiseille flow in a channel with diffuse walls, similar to the approach described
in [25].

We do not solve the Navier-Stokes equation directly. Instead, we use the lattice Boltzmann method (LBM) [10,
11, 26] to simulate the fluid flow. LBM uses one-particle distribution functions f; defined at the nodes of a regular
spatial lattice as main variables. Different labels k correspond to different velocities ¢; from a fixed finite set. In the
two-dimensional nine velocity (D2Q9) model used here, these velocities are ¢y = (0,0), ¢, = (cos((k—1)x/2), sin((k—
Dr/2))Ax/At for k=1...4,and ¢, = \/E(cos((k— 1/2)r/2),sin((k—1/2)n/2))Ax/At for k =5...8. Here, Ax is the
grid spacing, equal for both the x and y directions, At is the time step. The effect of making the velocities proportional
to Ax/At is that nonzero velocities lead to nearest neighbour and next-nearest neighbour sites of the square lattice in
one time-step, i.e., only lattice point positions appear in the dynamics, no interpolations are necessary.

The evolution equation for f; is

Ji(t + A1, X + ¢ Ar) = fi(t,X) +

eq
fe =ty (11)
-
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Distribution functions are advected (first term on the r.h.s.) and undergo a relaxation to equilibrium values fke 7 which
are, as usual, taken to be expansions of Maxwellians up to second order in the fluid velocity U
Ck'U+(Ck'U)2 U2

eq _
£4= pwi 1+ = " 20) (12)

with a having the physical meaning of an isothermal sound velocity. The local fluid density is given by p = Y. fi =
k

> £, the flow velocity is U = 3. fiex/p, and the weight coefficients are wo = 4/9,w;_4 = 1/9,ws_g = 1/36. This

k 3

form of the equilibrium distribution functions ensures mass and momentum conservation and provides the correct
form of the momentum flux tensor [11, 27].

Performing a Chapman-Enskog expansion, one can derive from (11) the continuity and Navier-Stokes equations
[11], with kinematic viscosity v = a?(r — At/2). For the present D2Q9 lattice, the isothermal sound velocity is
ag = Ax/ V3At. For small flow velocities the fluid is almost incompressible (effects of compressibility are proportional
to U?/a?).

As mentioned above, the interaction between the growing pattern and the fluid flow was simulated as proposed in
[25, 28]. An additional dissipative force was introduced in partially filled regions

¢2
Fg=-h"(1- d))pOVF(U - uy).

This provides the correct velocity boundary conditions at the diffuse interface (see [25, 28]), i.e., the sharp-
interface limit of the velocity boundary conditions of Eq. (10) is correctly reproduced.

The action of forces on a liquid was simulated by the exact difference method of [29]. The term Af; = f,f 1, U +
AU) - fkeq(p, U) is added to the r.h.s. of eq. (11), where AU = FAt/p is the velocity change due to the action of
force F at time step Atz. This form of the change of distribution functions is exact in the case where the distribution is
equilibrium before the action of the force (then after the action the distribution remains equilibrium), hence the name
of the method. In the case of a non-equilibrium initial state, this method is accurate to second order in AU. It is simple
enough and valid for arbitrary lattices and any dimension of space. The physical flow velocity u, is defined as

w =U+AU/2
which coinsides with U when the force is zero.
The total force acting on the grain is
F=->F,. (13)
The total torque acting on the grain is
N=- Z(r -R.,) xFy, (14)

where R, = Y ré(r)/ Y ¢(r) is the radius-vector of the center of mass of the grain.
Equations of motion of the grain are

R.. = Uy, Usy = F/V (15)
for the translational motion and

@ =w, &=N/I (16)
for the rotation. Here, U, is the center of mass velocity, « is the rotation angle, w is the angular velocity, V = p 3’ ¢(r)
is the total mass of the grain, and I = 3 ¢(r)(r — R,,,)? is the moment of inertia. Local velocity of solid is given by

u, = U, +w X (@ —-R.,).

Equations (5) and (8) are discretized on a square lattice with a grid spacing Ax and solved by a direct Euler method
with a time step Az. Advection of the phase field ¢ is calculated by the Lax-Wendroff method or by the third-order
CIP scheme [30, 31], advection of the concentration by the upwind method.
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Figure 1: Rotation of a grain in a channel flow. Time is (left to right, top to bottom) r = 0s,25s,45,65,8s,10s

3. Simulation results

We simulated the growth of a single solid grain from a liquid in different flow environments. The material data
for the Al-Cu alloy are given in Table 1. Preferential growth along principal axes was ensured setting the anisotropy
of the interface energy in the form

o= a’o(l - 36+4e(nj + n;‘, +n§))

where n is the local normal vector to the interface calculated relative to the rotation angle a. The strength of the
anisotropy was € = 0.7. In all simulations, the grid spacing was Ax = 10~ m, the time step At = 107> s. The
temperature was fixed at 7 = 922.2 K which means an undercooling of 1.0 K with respect to the initial composition.

3.1. Rotating grain in a channel flow

A single grain with initial radius 20Ax was put in a channel of the length L, = 400 - 10° m and the width
L, = 300 - 107® m. The initial position was xy = 0.6L,, yo = 0.4L,. A flow of liquid with the initial solute
concentration Cy = 4 % Cu was set at the boundary x = 0 and the conditions du;/dx = 0, d¢/dx = 0, IC/dx = 0 were
imposed at the boundary x = L,. At the sides, the no-flux conditions were imposed for the solute concentration and
the phase field, and the no-slip condition for the flow velocity. The incoming profile of the flow velocity was parabolic

u, = 4ugy(Ly - y)/L;

corresponding to the Poiseille flow. The grain was allowed to rotate but the center of mass position was kept fixed.

Simulation results are shown in Fig. 1. The grain begins to rotate clockwise because of the off-center placement,
and a vortex is formed below the grain. The upwind tip grows faster since the flow brings fresh material into its
vicinity.

Table 1: Material data used for simulation of dendritic growth in AlgsCuy

Melting point Al T, 933.6K
Liquidus slope my 2.6 K/%
Partition coefficient k 0.14
Liquid diffusivity D, 3-107°
Interface energy oo 0.24J/m?
Interface energy anisotropy € 0.7
Density variation L% 001 1/%

Kinematic viscosity v 5.7-107° m?%/s
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Figure 2: Grain in a shear flow. Time is (left to right, top to bottom) t = 15,45,75,10s
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Figure 3: Grain in a shear flow. Time dependence of the grain angular velocity

3.2. Grain in a shear flow

A single grain with initial radius 20Ax was put in a channel of the length L, = 400 - 10°° m and the width
L, =300 - 107® m. The initial position was xo = Ly/2, yo = L,/2. A constant flow velocity was imposed at the walls
uy=2-10*m/saty=0andu, = —2-10* m/saty = L,. The boundary conditions at x = 0, x = L, for the flow
were periodic, and a fresh material (C = Cy) was fed in. The grain was allowed to move and to rotate.

Simulation results are shown in Fig. 2. The grain rotates clockwise under the action of the flow. The time
dependence of the angular velocity is shown in Fig. 3. After the initial transient, the angular velocity increases, then
decreases because of the increased drag acting on the branches. This rotation effectively mixes the solute concentration
near the interface, and the growth is rather symmetric.

3.3. Moving grain in a channel flow

A single grain with initial radius 20Ax was put in a channel of the length L, = 400 - 107® m and the width
L, = 300 - 107® m. The initial position was xo = 0.6Ly, yo = 0.4L,. A flow of liquid with the initial solute
concentration Cy = 4 % Cu was set at the boundary x = 0 and the conditions du;/dx = 0, d¢p/0x = 0, 0C/0x = O were
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Figure 4: Moving grain in a channel flow. Time is (left to right, top to bottom) = 0.5s, 15, 1.5 s
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Figure 5: Moving grain in a channel flow. Time dependence of the grain velocity (left) and angular velocity (right)

imposed at the boundary x = L,. At the sides, the no-flux conditions were imposed for the solute concentration and
the phase field, and the no-slip condition for the flow velocity. The input profile of the flow velocity was parabolic

uy = 4uoy(Ly — y)/Lz., u, =0
corresponding to the Poiseille flow. A gravity force acted on the grain with an effective acceleration
g.=-0.12m/s*, g, = 0.

The grain was allowed to move and to rotate.

Simulation results are shown in Fig. 4. The grain moves in the direction of gravity and rotates. Again, the upwind
tip grows faster. Time dependence of the center of mass velocity and the angular velocity is shown in Fig. 5. When
the size of the grain increases, the drag force also increases, and the grain stops and then starts to move with the flow.
The angular velocity also first increases, then decreases and changes sign.
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4. Conclusions

In conclusion, we propose a mesoscopic scheme to simulate dendritic solidification with motion and rotation of
grains. The scheme is based on the phase-field and the lattice Boltzmann method.

We simulated the growth of a single rotating grain in a duct flow, the growth of a single moving and rotating grain
in a shear flow and in a duct flow with the action of gravity. In the first two cases, the grain rotates, in the last case the
rotation is less pronounced. In all cases, the upwind tip grows faster. This model shall be extended to 3-dimensions
and applied in large scale simulations in future work.
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