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SUMMARY

A combined phase-field /lattice-Boltzmann scheme is pro-
posed to simulate dendritic growth from supercooled melt,
with account for flows of liquid and thermal convection.

MODEL

1. Simulation of solidification — phase-field model (Karma
and Rappel, 1996).

2. Flow of liquid — lattice-Boltzmann-BGK (LBGK) method
with incorporated interactions with solid and thermal
convection. This step can be left out in the case of
purely diffusional growth.

3. Conductive and convective heat transfer — multicom-
ponent LBGK method.



Phase-field model

T(0)pr = 20 — 1 —4XT ¢(1 — ¢))20(1 — @)+
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T, + UVT = DV°T + ¢,.

¢ — concentration of solid phase (0 < ¢ < 1),

T = pc,(T —T,,)/L — normalized temperature,

W — anisotropic interface width,

T — relaxation time.

In order to obtain zero kinetic coefficient, the following re-
lations must be imposed
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Anisotropy function
A(f) =1+ ecos4b,

0 = arctan(¢,/¢,) — the angle between the local interface
normal and the X axis. We assume 7y =1, Wy = 1.
Interface stiffness o = 15e.

This equation was discretized on a uniform spatial lattice
with a step Ax = 0.4, and solved using the explicit Euler
method with time step At.



Lattice-Boltzmann method

e Regular lattice, lattice vectors e
e Discrete set of velocities ¢ At g = e

Variables f; — one-particle distribution functions.
Evolution equation

eq
felt,x) = filt = Atrp,x — c;Atrp) + kafk:

Propagation and collisions, 7, — Maxwellian relaxation
time. Later on At;p = 1.

Kinematic viscosity v = (7 — 1/2)/3.

Hydrodynamic quantities

Equilibrium distribution functions f.%(p, U).
Interaction with solid
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Thermal convection — buoyancy force

F.=—pa(l —¢)(T —Ty)g,

o — coefficient of thermal expansion, g — gravity accel-
eration.

Fq= U.




Heat transport

Second set of distribution functions V.
Evolution equation

N — Ny,

Nk(t + At,x + CkAt) — Nk(t, X) +
T

N = NSY(T, U + AU/2)
T = %Nk, U = %fkck/%fka AU = F/%fk

F=F,+F, — total force.
Resulting equation
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Thermal diffusivity x = (70 — 1/2)/3 everywhere (sym-
metric model).



Shear flow

Figure 1: Dendrite. A = 0.7, 15 = 0.15. Reduced velocity U=0 (a), U=0.0123
(b), U=0.0247 (c), U=0.0493 (d). Interface contours are shown at time incre-
ments of 50
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Figure 2: Seaweed. A = 0.8,15¢ = 0.15. Reduced velocity U=0 (a), U=0.0247
(b), U=0.0493 (c), U=0.0987 (d). Interface contours are shown at time incre-
ments of 20



Thermal convection
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Figure 3: Dendritic growth with convection. A = 0.8,15¢ = 0.3. Bg, = 0.0,
g = 0 (a); Bg, = —0.0005, g, = 0 (b); Bg, = 0.0005, g, = 0 (c¢) and g, = 0,
Bg. = 0.0005 (d). Interface contours are shown at time increments of 10



Influence of parallel low on the growth

Growth of the dendrite tip in the parallel flow
A = 0.65, 15 = 0.75, grid size 300x600
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Figure 4: Dependence of reduced velocity V and selection parameter o on flow
Reynolds number. 1 — V,v =1/3;2 —o,v =1/3; 3 —V,v =1/6; 4 —
o,v=1/6
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Figure 5: Dependence of reduced tip radius p on reduced flow velocity U




Growth of the dendrite tip in the parallel flow
A = 0.45,15¢ = 0.75, grid size 400x800
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Figure 6: Dependence of reduced velocity V' and selection parameter o on re-
duced flow velocity U
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Figure 7 Dependence of reduced tip radius p on reduced flow velocity U
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Growth of the dendrite tip in the parallel flow
A =0.7,15¢ = 0.15, grid size 400x800

Figure 8: Dependence of reduced velocity V' and selection parameter o on flow
Reynolds number
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Figure 9: Dependence of reduced tip radius p on reduced flow velocity U




Sidebranching in the parallel flow
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Reduced flow velocity

0.7,15¢ = 0.15.
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Figure 10: Growth of side branches, A
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At large flow velocities, oscillations of tip velocity were
observed, accompanied by the enhanced growth of side

branches.



Conclusions

The main results are

e Simulations showed strong influence of external shear
flow on the seaweed growth (Fig. 2)

e Influence of parallel flow on the operation state of den-
drite tip was investigated quantitatively (Fig. 4-9)

e Simulations demonstrated onset of velocity oscillations

and enhancement of sidebranching under parallel flow
(Fig. 10)



