

LATTICE-BOLTZMANN SCHEME FOR DENDRITIC GROWTH IN PRESENCE OF CONVECTION

Dmitry Medvedev, Klaus Kassner

Institute of Theoretical Physics, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany e-mail: dmedv@physik.uni-magdeburg.de

> Magdeburg 2004

SUMMARY

A combined phase-field/lattice-Boltzmann scheme is proposed to simulate dendritic growth from supercooled melt, with account for flows of liquid and thermal convection.

MODEL

- 1. Simulation of solidification phase-field model (Karma and Rappel, 1996).
- 2. Flow of liquid lattice-Boltzmann-BGK (LBGK) method with incorporated interactions with solid and thermal convection. This step can be left out in the case of purely diffusional growth.
- 3. Conductive and convective heat transfer multicomponent LBGK method.

Phase-field model

$$
\tau(\theta)\phi_t = (2\phi - 1 - 4\lambda \overline{T}\phi(1-\phi))2\phi(1-\phi) + \nabla \cdot (W^2(\theta)\nabla \phi) - \partial_x (W(\theta)W'(\theta)\phi_y)) + \nabla \cdot (\overline{W^2}(\theta)\nabla \phi) - \partial_y (W(\theta)W'(\theta)\phi_x),
$$
\n
$$
\overline{T}_t + \mathbf{U}\nabla \overline{T} = D\nabla^2 \overline{T} + \phi_t.
$$

 ϕ — concentration of solid phase $(0 \le \phi \le 1)$, $\overline{T} = \rho c_p (T - T_m)/L$ — normalized temperature, W — anisotropic interface width, τ — relaxation time.

In order to obtain zero kinetic coefficient, the following relations must be imposed

$$
W = W_0 A(\theta), \ \tau = \tau_0 A^2(\theta), \ \lambda = \frac{2ID\tau_0}{(K + JF)W_0^2}.
$$

Anisotropy function

$$
A(\theta) = 1 + \varepsilon \cos 4\theta,
$$

 $\theta = \arctan(\phi_y/\phi_x)$ — the angle between the local interface normal and the X axis. We assume $\tau_0 = 1$, $W_0 = 1$. Interface stiffness $\alpha = 15\varepsilon$.

This equation was discretized on a uniform spatial lattice with a step $\Delta x = 0.4$, and solved using the explicit Euler method with time step Δt .

Lattice-Boltzmann method

- Regular lattice, lattice vectors \mathbf{e}_k
- Discrete set of velocities $\mathbf{c}_k \Delta t_{LB} = \mathbf{e}_k$

Variables f_k — one-particle distribution functions. Evolution equation

$$
f_k(t, \mathbf{x}) = f_k(t - \Delta t_{LB}, \mathbf{x} - \mathbf{c}_k \Delta t_{LB}) + \frac{f_k^{eq} - f_k}{\tau_f}.
$$

Propagation and collisions, τ_f — Maxwellian relaxation time. Later on $\Delta t_{LB} = 1$. Kinematic viscosity $\nu = (\tau_f - 1/2)/3$. Hydrodynamic quantities

$$
\rho = \sum_{k} f_k, \qquad \rho \mathbf{U} = \sum_{k} f_k \mathbf{c}_k.
$$

Equilibrium distribution functions f_k^{eq} $k^{eq}(\rho, \mathbf{U}).$ Interaction with solid

$$
\mathbf{F}_d = -\nu \frac{2h\phi^2}{W_0^2} \mathbf{U}.
$$

Thermal convection — buoyancy force

$$
\mathbf{F}_c = -\rho \alpha (1-\phi) (\overline{T}-\overline{T}_0) \mathbf{g},
$$

 α — coefficient of thermal expansion, \mathbf{g} — gravity acceleration.

Heat transport

Second set of distribution functions N_k . Evolution equation

 $N_k(t + \Delta t, \mathbf{x} + \mathbf{c}_k \Delta t) = N_k(t, \mathbf{x}) + \frac{N_k^{eq} - N_k}{t}$ τ_{T} . $N_k^{eq} = N_k^{eq}$ $\chi^{eq}_k(\overline{T},{\bf U}+\Delta{\bf U}/2)$ $\overline{T}=\Sigma$ k N_k , $\mathbf{U} = \sum_{k=1}^{N_k}$ k $f_k \mathbf{c}_k / \sum$ k f_k , $\Delta \mathbf{U} = \mathbf{F}/\sum$ k f_k $\mathbf{F} = \mathbf{F}_d + \mathbf{F}_c$ — total force. Resulting equation

$$
\frac{\partial \overline{T}}{\partial t} = \mathbf{U}\nabla \overline{T} + \chi \nabla^2 \overline{T} + \frac{\partial \phi}{\partial t}.
$$

Thermal diffusivity $\chi = (\tau_T - 1/2)/3$ everywhere (symmetric model).

Shear flow

Figure 1: Dendrite. $\Delta = 0.7, 15\varepsilon = 0.15$. Reduced velocity $\overline{U}=0$ (a), $\overline{U}=0.0123$ (b), $\overline{U}=0.0247$ (c), $\overline{U}=0.0493$ (d). Interface contours are shown at time increments of 50

Figure 2: Seaweed. $\Delta = 0.8, 15\varepsilon = 0.15.$ Reduced velocity $\overline{U}=0$ (a), $\overline{U}=0.0247$ (b), $\overline{U}=0.0493$ (c), $\overline{U}=0.0987$ (d). Interface contours are shown at time increments of 20

Thermal convection

Figure 3: Dendritic growth with convection. $\Delta = 0.8, 15\varepsilon = 0.3$. $\beta g_y = 0.0$, $g_x = 0$ (a); $\beta g_y = -0.0005$, $g_x = 0$ (b); $\beta g_y = 0.0005$, $g_x = 0$ (c) and $g_y = 0$, $\beta g_x = 0.0005$ (d). Interface contours are shown at time increments of 10

Influence of parallel flow on the growth

Growth of the dendrite tip in the parallel flow

 $\Delta = 0.65, 15\varepsilon = 0.75$, grid size 300×600

Figure 4: Dependence of reduced velocity \overline{V} and selection parameter σ on flow Reynolds number. $1 - \overline{V}, \nu = 1/3; 2 - \sigma, \nu = 1/3; 3 - \overline{V}, \nu = 1/6; 4 - \sigma$ $\sigma, \nu = 1/6$

Figure 5: Dependence of reduced tip radius $\bar{\rho}$ on reduced flow velocity \bar{U}

Figure 6: Dependence of reduced velocity \overline{V} and selection parameter σ on reduced flow velocity \overline{U}

Figure 7: Dependence of reduced tip radius $\bar{\rho}$ on reduced flow velocity \bar{U}

Dependences $\overline{V} \sim \overline{U}^{0.38}$, $\overline{R} \sim \overline{U}^{-0.16}$, $\sigma \sim \overline{U}^{-0.04}$

Figure 8: Dependence of reduced velocity \overline{V} and selection parameter σ on flow Reynolds number

Figure 9: Dependence of reduced tip radius $\bar{\rho}$ on reduced flow velocity \bar{U}

Growth of the dendrite tip in the parallel flow

Sidebranching in the parallel flow

Figure 10: Growth of side branches, $\Delta = 0.7, 15\varepsilon = 0.15$. Reduced flow velocity $\overline{U} = 0.01$ (a) and $\overline{U} = 0.04$ (b)

At large flow velocities, oscillations of tip velocity were observed, accompanied by the enhanced growth of side branches.

Conclusions

The main results are

- Simulations showed strong influence of external shear flow on the seaweed growth (Fig. 2)
- Influence of parallel flow on the operation state of dendrite tip was investigated quantitatively (Fig. 4–9)
- Simulations demonstrated onset of velocity oscillations and enhancement of sidebranching under parallel flow (Fig. 10)