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Abstract
We propose a new discrete stochastic model for computer simulation of the
lightning process and the breakdown process in long gaps in gaseous
dielectrics. In this model we used cellular automata. Two different states of
a conductive structure that correspond to streamers and channels of very
high conductivity (leader phase) are introduced. The conductivity of the
streamers is assumed to be negligible in comparison with highly conductive
channels. The electric-field potential is obtained by solving the Laplace
equation in a region outside the equipotential, highly conductive part of the
structure. As the streamer growth criteria we use two multi-element models
in which several conductive bonds can arise at each time step. The growth is
stochastic in time, and the probability of streamer formation is proportional
to a certain function of local electric field r(E) that depends on the
properties of the dielectric. If the energy released in a segment of the
streamer is larger than a certain critical value, the streamer transforms to a
highly conductive phase. Patterns of conductive trees are obtained in
computer simulations of breakdown under various conditions.

Nomenclature

E Electric field strength
r(E) Growth probability function for streamer
p Probability of streamer growth
n Index in power-law approximation of growth rate

function
τ Time step in the discrete model of streamer growth
t Current time
	t A time interval
P(t) Time distribution of probability density for

appearance of new bond of a streamer
p(E) Electric-field dependence of probability of streamer

growth
〈u〉 Mean velocity of streamer tip propagation
h The length of a bond of rectangular calculation grid

(lattice)
ξ Random number uniformly distributed in the

interval from 0 to 1

E∗ A fixed value of electric-field strength. Breakdown
strength of a dielectric, and also parameter of field
fluctuation criterion of streamer growth

δ Random variable having physical sense of electric-
field fluctuation in a dielectric

f (E) Probability density function for random variable δ
g Characteristic width (scale) of exponential distribu-

tion for random variable δ
A Constant at the exponential electric-field depen-

dence of growth of streamer tip having a unit of
velocity

S Cross section of streamer segment
σ Conductivity of streamer
W Energy released in a streamer
W∗ A certain critical value of energy release in a

streamer
B A constant
w∗ Reduced critical value of energy release in a

streamer segment
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Eth Threshold electric-field strength at which energy
release in a streamer is insufficient for streamer-to-
leader transition

Si,j An array of cellular automaton states
ϕ Electric field potential
V0 Applied voltage
p− The probability that new bond (streamer segment)

does not arise at current time step
E(x) Distribution of electric-field strength along the

surface of grounded electrode

1. Introduction

Breakdown in solid, liquid and gaseous dielectrics is very
important in designing power systems because it determines
limitations of insulation in cables, transformers, electrical
rotating machinery, etc widely used in electric power
supply. Breakdown is a physical phenomenon with complex
evolution. Thus, a description of this phenomenon is difficult
because many different factors should be taken into account.
Description becomes even more difficult when trying to
simulate the evolution of lightning.

Up-to-date computer simulations of streamer growth are
based on the idea of space and time discretization. New linear
segments of the streamer channels join sequentially neighbour
sites of a certain spatial lattice to the conductive structure.
Thus, the shape of the conductive tree is represented by a
connected graph consisting of conductive bonds (cells).

Stochastic models are widely used to simulate the
propagation of a conductive phase before breakdown in solid,
liquid and gaseous dielectrics. Among the first stochastic
models proposed for computer simulation of breakdown in
dielectrics was the Niemeyer–Pietronero–Wiesmann (NPW)
model [1]. In the NPW model, the probability of streamer
growth p is first related to the local electric field as p ∼
r(E). A conductive tree is assumed to be equipotential,
and the potential distribution in dielectric is obtained from
the solution of the Laplace equation outside the growing
structure. Moreover, the model uses the power-law form of
the growth probability function r(E) ∼ (E/E∗)n. This model
has been employed in numerous studies for inter-electrode
gaps of various geometry in two- and three-dimensional cases
[2–6]. But in all these works, the authors were forced to take
very small values of the index n (from 0.25 to 4). It was
impossible to use sharper dependences on electric field because
the formation of new segments of streamers proceeds mainly in
the direction of the field and the growth of conductive structures
looks like a well-directed line [6]. On the other hand, for
relatively small values of n (slowly increasing function r(E)),
the structure obtained in simulations consisted of many small
branches. However, this was inconsistent with experimental
observations of breakdowns in long gaps and records of
lightning. The projection of electric field onto lateral direction
is relatively low. Hence, for small values of n, the probability
of formation of several new segments from the streamer tip
becomes comparatively larger than that for sharp dependence
r(E).

Wiesmann and Zeller [7] attempted to solve this problem
using cut-off for the growth probability function for a critical
magnitude of the electric fieldEcr that must be exceeded for the

streamer to grow at a given point. This suppresses the growth
of small lateral branches in the dielectric between the branches
of the internal part of the conductive structure. Another
approach was proposed by Femia et al [8], who used a special
graphic post-processing for this purpose. As the measure of
channel luminosity, they introduced the width of the branches
and considered it to be proportional to the logarithm of the
charge flow. Thus, they eliminated the narrowest branches of
the patterns obtained in order to produce realistic shapes of
conductive structures.

Actually, the problem is in the absence of complete charge
relaxation along the branches of conductive structures. In
other words, the charge relaxation is gradual rather than
instantaneous, and the electric field increases slowly. This
process prevents the electric field from enhancing to very
high magnitudes in front of the streamer tips because the next
segments of the streamer have enough time to arise at low
electric field. Thus, the streamer tips propagate in a local
field that is greater than the initial electric field. However,
the coefficient of field amplification ahead of the streamer tip
is usually in the range from 2 to 5. The last circumstance makes
it possible to use an approximate approach [9] to simulate
the main stochastic features of breakdown in dielectrics. In
[9], a stochastic cellular automaton was used instead of exact
calculations of the electric field in the absence of complete
charge relaxation.

In [7, 8, 10–12], the NPW model was supplemented
with the postulate of a constant voltage drop (of order of
10 kV cm−1) along conductive channels to describe the stop
length of a conductive structure at relatively small values of the
applied voltage. In some sense, this approach also simulates
the slow charge relaxation along the conductive structure,
which reduces the potential of the branches and, hence, the
local electrical field in the vicinity of the branch tips. In reality,
this electric field must increase in time as long as the charge
relaxation develops. Hence, the postulate of a constant voltage
drop fails to take into account the temporal evolution of charge
relaxation along the branches. This is the main disadvantage
of this approach.

To take into account charge relaxation exactly, it is
necessary to solve Poisson’s equation together with the
equation of electric charge flow along the branches of finite
conductivity [13–15]. This approach includes the complicated
description of state of plasma in the discharge channels taking
into account the dynamics of dissociation, ionization and
recombination of particles in the plasma of the channels. A full
description must also include the effects of energy dissipation
(expansion of channels, light emission, etc). These processes
ensure the mechanism of feedback during development of
a tree structure with branches of finite conductivity. In
computer simulations of the growth of conductive structure, the
calculation of charge transfer along the conductive branches is
even more difficult [14].

The new stochastic model proposed in the present paper to
simulate the formation and growth of a conductive tree does not
consider all of these physical processes. Instead, for simplicity,
we introduce two different states of a conductive structure:
channels of very low conductivity that correspond to streamers,
and channels of very high conductivity that correspond to
leaders. Indeed, the structure of a leader discharge in gases
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consists of conductive regions of two types: highly conductive
channels (leaders) and the corona sheath (streamer zone)
[16–18]. The processes inside the leader channels depend
on the configuration and growth of the streamer branches.
Transition of the streamer to the highly conductive phase can
occur after a delay, which depends on the energy release. This
allows us to describe the rise in potential at the tips of the
conductive branches with time and, hence, to take into account
charge relaxation along the branches in a first approximation.
Our two-stage model is simple enough compared to that of
Dul’zon et al [15], who assumes that the conductivity of the
channels is proportional to the internal energy of plasma.

In [14] it was proposed that all possible stochastic models
of streamer growth be divided into two groups. From a physical
point of view, models of the first group assume that the growth
of the first bond (streamer) suppresses the development of the
others at a current time step. Therefore, just one bond is added
in a time step (single-element models). In the second group
of models, in contrast, the appearance of any bond does not
influence the development of the others. Thus, in models of
the second group, several bonds can be generated at each time
step (multi-element models). For models of the first group, the
time step is equal to the delay required for the appearance of a
first new bond. The sequence of time intervals calculated in a
proper way for each growth step according to certain rules is
called ‘physical time’. For all models of the second group, the
time step is constant and all bonds that may arise in a shorter
time than the time step are accepted.

Let us consider the generation of a new bond at a current
time step of duration τ as a stochastic process in time. The time
step τ of the multi-element model can be divided into smaller
intervals of duration	t � τ . It is assumed that (1) the random
event of this bond generation does not depend on the generation
of other candidate bonds, provided that the local electric field
E is constant (2) the probability of this bond generation at
time t is independent of the events that precede t and (3) the
probability of bond generation in a short time interval 	t is
p = r(E)	t .

The probability of a random event of bond generation
at time t is obtained from Bernoulli’s statistical test scheme.
Using Poisson’s theorem of the theory of stochastic processes,
we can obtain the following probability density for the
appearance of a bond [19]:

P(t) dt = r(E) exp(−r(E)t). (1)

For all multi-element models in every time step τ , the streamer
may travel distance h with probability

p(E) = 1 − exp(−r(E)τ) (2)

and may stand still with probability 1 − p(E). Here h is
the bond length in the calculation grid. Hence, the mean
propagation velocity is given by

〈u〉 = hp(E)/τ (3)

provided that the electric field ahead of the streamer tip is
equal to E. In a low electric field, the probability of streamer
growth (2) is small and p(E) ≈ r(E)τ . It follows from
(3) that 〈u〉 = hr(E) [13] in this case. Thus, the function

r(E) is closely related to the average velocity of streamer tip
propagation in the local electric field E ahead of the tip.

In 1993 Biller [20] proposed the first single-element
model, in which ‘physical time’ was calculated correctly. He
assumed that the probability density (1) is valid for the delay
time of generation of all candidate bonds ti , and hence all
possible ti were calculated from the formula

ti = − ln(ξi)/r(Ei). (4)

Hereafter, ξ will be a random number that is uniformly
distributed in the interval from 0 to 1. Just one bond that has
the shortest delay time was added to the streamer structure.
Precisely this quantity τ = min{ti} was assumed as the
physical time interval.

To simulate the breakdown process, we used cellular
automata (CA), a well known method for simulating the
evolution of complex natural systems [21–23]. Different CA
have been applied to physical and technological problems
involving local interaction. Despite their structural simplicity,
CA can exhibit a complex dynamic behaviour and can describe
many physical systems and processes.

Danikas et al [24, 25] used CA for simulation of streamer
structure growth. They employed the simplest deterministic
criterion of growth Ei > E∗ (field threshold criterion (FTC)),
where E is the local electric field and E∗ is the breakdown
strength of the dielectric. Stochastic features were introduced
into the model by means of random values of the dielectric
constant ε, uniformly distributed in the range between 2.1
and 2.25. Unfortunately, this approach does not meet the
requirements for streamer growth criteria with physical time
that were analysed in detail in [14].

2. Models of streamer formation

We assume that part of the conductive structure is equipotential
because of its very high conductivity. On the other hand,
the streamer branches have very small conductivity and
practically do not influence distribution of the electric field
potential. Thus, the absence of complete charge relaxation
along the branches was modelled by neglecting the streamer
conductivity. In this case, the electric field potential outside
the highly conductive structure can be obtained by solving the
Laplace equation with boundary conditions on the electrodes
and the highly conductive structure.

Two assumptions were made for streamer growth. First,
the growth is stochastic in time and, second, the probability
of streamer formation is proportional to a certain function of
the local electric field (2) that depends on the properties of the
dielectric.

In the present work as the streamer growth criteria, we used
two multi-element models in which several conductive bonds
can arise in each time step. The first is the field fluctuation
criterion (FFC) [9, 13, 14] for the growth of a new conductive
phase. If the condition

Ei > E∗ − δ (5)

was fulfilled in a cell, then the new segment of the streamer
forms there during time step τ . Here Ei is the mean local
electric field in each lattice cell. The parameter E∗ depends
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on the properties of a particular dielectric. The random
variable δ (fluctuation) is assumed to take into account the
uncertainty in the value of E∗ due to inhomogeneities in
the dielectric and thermal and other fluctuations, including
uncertainties in the external conditions (for example, initial
ionization of the dielectric). In the case of modelling lightning
processes, one should also take into account many different
and, sometimes, unknown factors (such as air density and
humidity, atmospheric ionization, etc). However, all these
uncertainties of the lightning phenomenon can be treated as
stochastic features already included in the model. In this sense,
the new stochastic model is also suitable for simulation of the
initiation and growth of the lightning tree.

Let us consider one candidate bond on which a new
segment of the streamer may arise at a current time step τ .
For electric field E < E∗, the probability that this streamer
segment appears at time t < τ is equivalent to the probability
of satisfaction of inequality (5):

p(E) =
∫ ∞

E∗−E
f (δ) dδ. (6)

Here f (δ) is the probability density function for the random
variable δ. The particular form of the function f (δ) can be
determined from (3) using experimental data on the electric-
field dependence of the mean propagation velocity of the
streamer.

The values of probabilities (2) and (6) can be equated
to determine the value of the time step τ . Thus, for all
models involving the growth criterion (5), the value of τ can
be expressed in terms of the functions r(E) and f (δ):

τ = − 1

r(E)
ln

(
1 −

∫ ∞

E∗−E
f (δ) dδ

)
. (7)

Suppose that each random value of δ corresponds to a
definite time t when the new bond should arise. In this case,
all values of δ that satisfy inequality δ > E∗ − E correspond
to the condition that a new bond should arise at time t < τ .
On the other hand, all values of δ that satisfy the inequality
δ < E∗−E correspond to the condition that a new bond should
arise at time t > τ . It is obvious that value of δ = E∗ − E
corresponds to t = τ .

Hence, from (7) we obtain the following relation between
the random moment when the new segment arises t and the
random variable δ:

t = − 1

r(E)
ln

(
1 −

∫ ∞

δ

f (δ) dδ

)
. (8)

In this paper, we use an exponential probability density
for fluctuations δ as a particular case:

f (δ) = exp(−δ/g)
g

(9)

which is equivalent to δ = −g ln(ξ). The physical meaning of
g is the characteristic width (scale) of the distribution (9) of the
random variable δ. For this exponential distribution, the value
of g is also equal to the mean value of the random variable δ.
It follows from (3) and (6) that the mean velocity of streamer
propagation 〈u(E)〉 in electric field E is given by

〈u(E)〉 = A exp(E/g) where A = h

τ
exp(−E∗/g).

(10)

Thus, for the FFC model, the definite time of appearance
of the ith bond corresponding to each random value δi [14] is
equal to

ti = − ln(1 − exp(−δi/g))
r(Ei)

(11)

where r(E) is obtained from (7) and (9):

r(E) = − 1

τ
ln(1 − exp(−(E∗ − E)/g)). (12)

Thus, the field fluctuation criterion of streamer growth (5) is
equivalent to the growth criterion according to which all bonds
that have ti < τ should arise.

The second model we used was the multi-element
stochastic time lag (MESTL) model proposed in [14]. This
new multi-element model is based on Biller’s single-element
model [20]. In the MESTL model, the physical time step τ is
arbitrary. All possible bonds should arise that have delay time
of appearance ti , calculated from (4), less than τ . The MESTL
model, in contrast to the FFC model, allows one to choose an
arbitrary dependence of the growth probability function r(E)
on the electric field including form (12).

From (9) and (11) it follows that random values of the
delay time for our FFC model can be calculated from the
formula ti = − ln(1−ξi)/r(Ei). This formula is equivalent to
formula (4) provided that the random numbers ξi are uniformly
distributed in the interval from 0 to 1. Hence, the FFC
and MESTL criteria of growth are shown theoretically to be
equivalent (see also [14]).

3. Model of streamer transformation to a highly
conductive phase

When, in a certain filament, the released energy reaches
a sufficient value, this filament transforms into a highly
conductive arc. The physical mechanism of streamer transition
to a highly conductive phase is not very clear, although several
theories have been proposed [26, 27].

Gallimberti [26] developed a theory in which the energy
input due to the current flow in the streamer filaments is
of importance. He assumed that the energy of electric
field is transferred to molecules by electron collisions and is
stored mainly as vibrational energy in the molecules. This
means that in a new segment of the conductive channel the
plasma is initially in a non-equilibrium state because the
vibrational temperature is much higher than the translational
temperature [27]. Then relaxation to thermal equilibrium
occurs simultaneously with heating of the plasma. The
relaxation time constant depends on the gas temperature.
After a short delay time at the final stage of transition
of the streamer to a spark (highly conductive phase), the
process of V –T relaxation accelerates because the plasma
temperature increases, leading to a subsequent increase in
the stem conductivity. Thus, transition of the streamer to a
highly conductive phase occurs. The transition time depends
sharply on the voltage drop along the channel. For example,
for dry air, the transition time varies from 103 to 102 ns as the
corresponding electric field increases from 20 to 24 kV cm−1

[27].
In this paper, we use a somewhat simplified approach. If

we consider a small segment of the streamer as a cylinder with
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height h, cross section S and conductivity σ (very small value),
then the total energy released by time t is

Wi = h · S · σ
∫ t

ti

E(t)2 dt (13)

where ti is the time when this bond arose.
Thus, if the released energy is greater than a certain critical

value, a new highly conductive segment is formed. This means
that a criterion for the formation of a new highly conductive
segment can be

B

∫ t

ti

E2
i dt > W∗ (14)

whereW∗ is a certain critical value of the released energy and
B = h·S ·σ . It is convenient to use the parameterw∗ = W∗/B.
Thus, the segments of highly conductive channel are formed
after a certain time delay that depends on the internal electric
field and, hence, on the applied voltage. In the limit w∗ = 0,
our model has only a highly conductive phase and behaves
like the ordinary Laplace model. It should be noted that we do
not consider how ‘reverse’ processes such as light emission,
hydrodynamic expansion, etc influence the streamer dynamics.
Nevertheless, we introduced some restriction on the condition
of the streamer-to-leader transition. In addition to (14), we
assume that in the channel the current local electric field must
exceed a certain minimal field Etr in order to ensure sufficient
energy release and, hence, to prevent the decay of plasma by
these ‘reverse’ processes.

4. Cellular automata

In this paper, we extend the NPW approach to simulation of
breakdown [1] and propose a new stochastic model that takes
into account the growth of the initial streamers and subsequent
transitions of some of them to highly conductive channels. For
this purpose, we use CA.

The automata are a class of very powerful models
originated in computer science. They are well known
extensions of the ‘classical’ automata. They provide
mathematical models for a wide variety of complex natural
phenomena, from growth of patterns in biological systems to
turbulence in fluid dynamics. A cellular automaton consists of

• a lattice of cells; this lattice can be two- or three-
dimensional and have arbitrary size. At each time, each
cell can be in one of a finite number of distinct states.

• local rules of transformation from one state to another,
which depend only on the states of the neighbour cells.

The states of all cells are updated simultaneously at each
time step according to the so-called local rules of CA.

In the present work, a two-dimensional stochastic CA was
employed, and the space between the electrodes was divided
into cells. Thus, an array of states of the cellular automaton Si,j
was used. As in [24, 25], we employed the so-called extended
form of CA, in which not only the discrete states of CA but also
some real physical values (electric potential, energy release,
random fluctuations, etc) were kept in each cell. Hence, our
stochastic CA transformation rules define a new state of a cell
at a next time step using not only data on the states of the

CA but also information on the physical parameters in a local
neighbourhood of the cell considered:

Si,j = $(S∗, ϕ∗, δ,Wi,j ). (15)

Here S∗ is the set of states of the CA in this and neighbour
cells, ϕ∗ is the set of values of the electrical-field potential, δ is
the random value generated independently for this cell at each
time step andWi,j is the energy released in this cell.

For development of the model, we proposed that the
gradual change of the electrical conductivity along the
branches be approximated by a sequence of a lowly conductive
phase (streamer) and a highly conductive phase (leader). In
view of this, each cell occupied by the dielectric can be in
three main states. The first is the initial state. This means that
the material in the cell is still a dielectric. The second state
corresponds to the formation of a streamer in this cell. The
third state indicates that the transition of the ‘streamer’ state
to the ‘leader’ state has occurred.

Before initiation of breakdown, all cells of the dielectric
were in the initial state (S0). Then, according to one of the
stochastic models for streamer growth, some of the cells can
turn into the next state (S1) that corresponds to the streamer.
According to the model of streamer transformation to a highly
conductive phase, some of the cells can transform from state
S1 to states S2 or S3 that correspond to the cells of downward
and upward leaders, respectively. It was assumed that a
downward leader is equipotential and has the potential of the
upper electrode. The same was assumed for an upward leader,
which has the potential of the lower electrode.

We used the distinct states of the cellular automaton not
only to describe cells that initially were in the dielectric state
but also to indicate cells that belong to the upper and lower
electrodes (the states S4 and S5, respectively).

An iterative process is a method for solving the Laplace
equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0. (16)

We used a procedure in which all values of the cells belonging
to the dielectric (S0) and streamers (S1) must be updated in
accordance with the formula

ϕi,j = ϕi,j+1 + ϕi,j−1 + ϕi+1,j + ϕi−1,j

4
. (17)

At every iteration step, the potentials of the cells of the
lower electrode (S5) and the upward leader (S3) must be set
equal to zero. Moreover, we must assign the value ϕ0 to the
potentials of the cells belonging to the upper electrode (S4)
and the downward leader (S2). Such formalization simplifies
significantly the logical structure of the computer program. It
allows us to consider all cells in a standard way. For example,
in PASCAL language, it is possible to use the following simple
operator during solution of the Laplace equation:

case S[i,j] of
0,1: F[i,j]:= (F[i+1,j] + F[i-1,j]

+ F[i,j+1] + F[i,j-1])/4;
2,4: F[i,j]:=F0;
3,5: F[i,j]:=0;

end;
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Figure 1. Examples of conducting tree growth from upper and
lower electrodes. The numbers in the cells are the states of our CA.

Figure 2. (a), (b) Example of the nearest neighbourhood of one of
the tips of the downward streamer. The grey cell at the centre
originated from the cell in the left upper corner. (c) Local coordinate
system in the vicinity of the central cell. (d) The information stored
in this cell indicates the direction from which a new conductive
bond originated.

Figure 3. Possible new bonds of streamers in discrete stochastic
models with the GOT limitation.

where the letter F represents the electric-field potential ϕ.
The configuration of the electrodes was defined initially by
assigning values ‘3’ or ‘5’ to some elements Si,j of our array
of cellular automaton states (figure 1).

At every time step, a change of state from S0 to S1 is
possible only for cells contiguous to the electrode surfaces or
the streamer or the highly conductive phase. On the other hand,
only cells contiguous to the electrode surfaces or the highly
conductive phase could change their state from S1 to S2 or S3.
The procedure proposed is repeated until the conductive tree
approaches the opposite electrode.

Of course, in reality, the conductive tree consists of small
linear segments (figure 2(b)) rather than of square elements
(figure 2(a)). To describe this, we introduced a local coordinate
system in the vicinity of each cell (figure 2(c)). The first digit
of the number in each neighbour cell denotes the x coordinate
of the cell (column number), and the second digit denotes the y
coordinate of it (row number). In this case, each neighbour cell
has a unique value. We place one of these values into the cell
considered to indicate one of the neighbour cells from which
the conductive bond originated. This information was kept in
the cell as an additional set of states of the cellular automaton.
For example, number ‘13’ placed in the central cell (figure 2(d))
becomes a certain pointer which indicates that this cell (bond)
originated from the cell located in the upper left corner of the
nearest neighbourhood. In this case, it is possible to use this

information, for example, to draw segments of the conductive
structure (figure 2(b)), and to consider the structure as a graph
consisting of conductive bonds (figure 3).

Should new streamer branches arise only from the leader
tips or from any part of the leader? At present, this
question remains to be solved. For example, during lightning
propagation, new streamer branches arise mainly from the
leader’s tip. The same situation is observed in the breakdown
in dielectric liquids. The currently available high-speed
photographs of the breakdown phenomenon show that the
growth of a conductive tree usually occurs only from the
tips of the existing branches [28]. Therefore, a similar
limitation of the growth was also used in some calculations.
It was assumed that at each time step, the appearance of new
streamer branches is allowed only from the tips of the existing
conductive structure (figure 3) [29, 30]. The growth of new
streamer segments that may originate not from the tips of
the conductive structure was forbidden. This limitation of
conductive tree growth can be called ‘growth only from the
tips’ (GOT). The probabilities that new bonds arise Pi depend
on the local electric field according to the growth probability
function r(E). In this case, ramification of the branches may
occur with some probability.

5. Calculations

The problem was solved for the geometry in which breakdown
occurs between two electrodes. The lower electrode was at an
electric potential ϕ = 0 and the upper one was at ϕ = V0,
where V0 is the applied voltage. Periodic boundary conditions
in the x direction were used. The experiments on breakdown
in long gaps were modelled in point–plane geometry with gap
length d. In simulations of lightning, the ‘cloud’ was modelled
by an equipotential surface at constant potential ϕ = V0 . This
approach is usual for such kind of simulations.

The simulation was carried out in a rectangular area
on lattices up to 600 × 600. In the region outside the
highly conductive structure, the electric field was calculated
at every time step by solving the Laplace equation with
the boundary conditions on the electrodes and the highly
conductive structure. To calculate the potential distribution
at the next time step, we used the potential distribution at the
previous time step as the initial data for the iterative process
because these values did not differ significantly from one
another.

At every time step, new streamers may arise from the
branches of the existent conductive structure and transition of
one or more segments of the streamers to the highly conductive
phase may occur. This procedure was repeated until the
conductive tree approaches the opposite electrode.

Eight permissible directions (including diagonals) of
streamer propagation are allowed at each site of the square
lattice to diminish the anisotropy of the growing structure. By
analogy with formula (3), the mean velocity of streamer tip
propagation in diagonal directions is

〈u〉 =
√

2hp(E)/τ (18)

which is greater by a factor of
√

2 than the mean velocity (3) for
the basic directions of the grid, provided that the longitudinal
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projection of the electric field has the same value. It is
important to ensure the same velocity in diagonal directions
provided that new bonds arise with the same probability. A
possible way to do this is to delay the growth of diagonal
bonds until the next time step with certain fixed probability
p− [13]. In this case, a new bond of length

√
2h may arise

with the same probability p(E) as for non-diagonal direction,
but it may arise in the current time step τ with probability
(1 − p−) or may arise at the next time step (time interval is
equal to 2τ ) with probability p−. Hence, the mean velocity of
streamer propagation in diagonal directions has the form

〈u〉 =
(√

2h

τ
(1 − p−) +

√
2h

2τ
p−

)
p(E). (19)

This expression for the mean velocity of streamer propagation
in diagonal directions coincides with formula (3) for the usual
non-diagonal directions at valuep− = 2−√

2 = 0.586. Thus,
identical streamer propagation velocities were ensured for all
bonds, including diagonals, provided that the longitudinal
projection of the mean electric field onto the corresponding
direction was the same. For this purpose, the additional state
of the CA (S6) was specially used to indicate the cells of the
dielectric for which the growth of diagonal bonds was delayed.

6. Results

In all simulations, hereafter we use arbitrary units. To choose
a reciprocally complementary set of scales for space, time and
electric field (or voltage), one needs to have reliable physical
or experimental data. These three scales can be defined in
each particular case that is to be simulated. This is difficult for
the case of lightning but is easier for the case of breakdown
in long air gaps, for which many experimental data obtained
under well-defined conditions exist. However, instead of using
experimental data, we decided to develop a general model
that could be applicable for simulation of both the lightning
phenomenon and breakdown in gaseous dielectrics. The time,
length, charge, voltage and electric field are given in arbitrary
units in the present work to emphasize the common features
of the phenomena.

One of the most important components of every stochastic
model of electrical breakdown is the growth probability
function r(E). It carries information on the physical
mechanisms of breakdown initiation and streamer propagation.
Dependence (12) of the FFC model for parameter valuesE∗ =
1, g = 0.1 and τ = 1 is shown in figure 4 (curve 1). From
formula (12) it follows that in the range of electric fields up to
E = 0.8, r(E) ≈ A exp(E/g), where A = exp(−E∗/g)/τ .
As noted above, the electric field is given in arbitrary units.
This dependence is shown in figure 4 (curve 2). It can be
considered as an alternative approximation of the possible
ionization mechanisms of breakdown parallel with the simple
power-law dependence r(E) ∼ (E/E∗)n. For some parameter
values n = 9, E∗ = 1 and τ = 1 (figure 4, curve 5) the power-
law dependence is very close to the exponential dependence
(curve 2).

In every calculation, we observed a statistical time lag
for the initiation of conducting trees. For fixed geometry,
it depends sharply on the voltage difference. In the case of

Figure 4. Streamer growth probability function r(E). Curve 1
corresponds to formula (12) at E∗ = 1, g = 0.1 and τ = 1. Curve 2
is the exponential approximation of r(E) obtained from (12), which
is valid for small growth probabilities. Curves 3, 4 and 5 correspond
to the power-law form (n = 3, 5 and 9 respectively, E∗ = 1 and
τ = 1).

lightning, the mean time lag is closely related to the probability
of appearance of lightning in time.

The growing conductive structure consisted of many
individual streamers that propagated in a competitive way.
Some of them subsequently transformed into a highly
conductive phase. A short current pulse accompanied each
of these events because of the stepwise change of the total
charge of the conducting structure. For every node occupied by
leaders or electrodes, one can consider Poisson’s equation and
determine the charge of this node using values of the potential
in neighbour cells. The total charge, for example, the total
charge of the downward leader and the upper electrode, was
calculated by summing up the charges of the nodes belonging
to them (in the present model, we neglected the conductivity
of the streamers and, hence, the streamer cells cannot carry
charge). The accuracy of calculation of the charge (several
per cent) was checked by a comparison of the electric charges
of the upper and lower electrodes, including the charge of the
downward and upward leader structures, respectively. Plots
of the total charge of the downward conducting structure
calculated together with the charge of the upper electrode are
shown in figure 5. The MESTL model with parameters n = 9,
E∗ = 1 and τ = 1 was used. Immediately after voltage supply,
every electrode has a certain initial charge proportional to the
applied voltage because the capacitance of the electrode system
was constant. For relatively high values of the applied voltage
(curve 3), the total charge of the downward leader and the upper
electrode increases rapidly because of the fast growth of the
conducting structure.

Figures 6 and 7(a) show results of simulations of
breakdown in point–plane geometry obtained with the FFC
model. For these calculations, the parameters of the FFC
model were E∗ = 1, g = 0.1 and τ = 1. In the last case, the
value of the electric field was somewhat smaller, and one can
clearly see that the growth of small-scale patterns of streamer
branches does not start from the highly conductive stem at the
initial stage of conducting tree propagation.

As mentioned above, the FFC and the MESTL criteria
of growth were shown theoretically to be equivalent. In
the present work, we compared the results obtained with
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Figure 5. Total electric charge of the downward conducting
structure calculated together with the charge of the upper electrode
(MESTL model with n = 9, E∗ = 1 and τ = 1). Lattice size was
100 × 100. The applied voltage was V0 = 9.3, 10 and 13.3 (curves
1, 2 and 3 respectively).

Figure 6. Typical configuration of conductive cells obtained in the
FFC model with the GOT limitation. The light grey cells indicate
the streamers. The dark grey cells indicate the high conductive
phase. The applied voltage was V0 = 8.1 and w∗ = 50. Lattice size
was 40 × 40; t = 1120.

these models and concluded that they actually produced
stochastically similar patterns of conducting structures.
Figure 7 shows typical results obtained for the FFC model
(a) and for the MESTL model (b). For both growth criteria,
the dependence r(E) was used in form (12) with E∗ = 1,
g = 0.1 and τ = 1. Moreover, the GOT limitation on the
growth (growth only from the tips) was used.

The distribution of electric field E(x) along the lower
electrode, as downward leader approaches to it, is shown in
the figure 7(b). Evidently, the maximum electric field on
the surface is approximately opposite to the advanced tips of
the leader structure. This effect can lead to the generation
of an opposite upward leader just before the leader channel

Figure 7. Typical results obtained (a) for the FFC model and (b) for
the MESTL model. Here both the streamers (thin lines) and the
branches of high conductivity (thick lines) are shown (w∗ = 1.1).
The electric-field distribution E(x) along the lower electrode is also
shown (b). The applied voltage was V0 = 5.4. Lattice size was
40 × 40; t = 710 (a) and 620 (b).

approached closely the ground as was observed in several
simulations. In any case, the propagation of the tips accelerates
as the conductive structure approaches the ground.

The results of simulations of prebreakdown phenomena
using the MESTL model are shown in figures 8–10. The model
with the streamer-to-leader transition (SLT) was compared
with the ordinary Laplace model (OLM) with a single, highly
conductive, phase. The conditions of occurrence of lightning
are governed by the quantity and density of the charge
accumulated in the cloud and by the distance between the
cloud and the ground. The characteristic time of change of
these parameters is large enough (of the order of several tens
of minutes). Hence, as a rule, breakdowns occur under low
overvoltage conditions. At low applied voltage, the conducting
structure in the SLT model almost entirely consists of a highly
conductive phase. Hence, the generation of highly conductive
structures does not differ from the results obtained using the
OLM (figure 8). However, the time of structure growth is
significantly greater in the SLT model because of the delay
in the SL transition (figure 8), which depends on the value
of w∗.

Under moderate overvoltage conditions, the development
of conducting structures proceeded when the relative values
of the electric field ahead of the tips E/E∗ was about 0.5
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Figure 8. Results obtained for the MESTL model in the limit of a
single, highly conductive, phase (a) and with SL transition at
w∗ = 1.1 (b). Both the streamers and the branches of high
conductivity are shown. n = 9, V0 = 6 and t = 1860 (a) and 3040
(b). Lattice size was 100 × 100.

at the beginning of growth and 0.8 at the growth stages
shown in figure 9. Hence, in both cases, the conducting
structures practically did not branch initially. In the case of
the OLM, the conducting structure became more branching
as its tips approached the ground. This effect was not so
significant in the case of the SLT model (figure 9(b)) because
the streamer tips propagate in the vicinity of the leaders in
the lower electric field. This is a main advantage of the
model proposed. One can see that in the one-phase model
(Laplace growth), the velocity of the leader is approximately
two times as high as in the case of the model with the SL
transition.

It was mentioned above that the rate of growth is
governed by the local electric field ahead of the streamer
tips and depends on the growth probability function r(E).
To compare our results with the results obtained for the
commonly used low values of the index n in the function
r(E), we carried out simulations with a relatively low value
of n = 3 using the MESTL model in the limit of a single,
highly conductive, phase (figure 10(a)) as well as with the
SL transition (figures 10(b) and (c)). It can be seen that
the patterns in both cases are more branched, as expected,
than for n = 9 (figures 8 and 9). At the beginning of this
work, we assumed that in reality only the leader structures are
usually observed as bright luminous objects because energy

Figure 9. Results obtained for the MESTL model in the limit of a
single, highly conductive, phase (a) and with SL transition at
w∗ = 1.1 (b). Only the branches of high conductivity (leaders) are
shown. n = 9, V0 = 10 and t = 63 (a) and 183 (b). Lattice size was
100 × 100.

is released mainly inside them. Hence, we considered only
the leader patterns (figures 9(b) and 10(c)). The system of
streamer branches carries only auxiliary information and is
known as the corona sheath (streamer zone) [16–18], which
is actually observed in experiments using special sensitive
methods.

In the case of the OLM, as mentioned above, the leader
structure (figure 10(a)) has many small branches, which grow
rather chaotically not only toward the ground but often also in
the backward direction. The structure obtained using the SLT
model is free of this disadvantage (figure 10(c)).

Results of simulation of lightning initiation and growth
from a cloud are shown in figure 11. The electric potential of
the cloud was V0 = 13.3. We note that the formation of the
opposite upward leader was observed in several simulations
just before the lightning approached the ground. Sometimes,
the start of growth of the second and subsequent structures was
observed at the electrode surface (figure 11).

7. Discussion and conclusions

The discrete stochastic model of conducting tree growth
proposed here describes adequately the main stochastic
features of breakdown (for example, statistical time lag and
random place of origin, asymmetry and non-reproducibility
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Figure 10. Results obtained for the MESTL model in the limit of a
single, highly conductive, phase (a) and with SL transition at
w∗ = 1.1 (b), (c). n = 3, V0 = 6 and t = 180 (a) and 330 (b), (c).
Both streamers and leaders (b) and only leaders (c) are shown.
Lattice size was 100 × 100.

of a detailed conducting structure, tooth-like shape of current
and light pulses, opposite leader, etc). Thus, the results of
simulations of the growth of the streamer and leader structures
are in qualitative agreement with experiments.

In the two-stage model, the streamer branches have very
small conductivity and thus, as mentioned above, do not
influence the electric-field distribution. At first glance, it
might seem that streamers could not propagate for more than
one step from the leader or electrode. At the same time,
we can see that streamers can pass ahead the leaders up to

Figure 11. Typical pattern of lightning structure (the MESTL model
using the GOT limitation). Only the branches of high conductivity
(leader) are shown. Lattice size was 100 × 100; n = 9, V0 = 13.3
and t = 4090.

three or four steps in our calculations (figures 6, 7(a) and 7(b)
and 10(b)). Nevertheless, in the two-stage model, streamers
actually cannot go far away from the highly conductive
structure because there is no charge relaxation along the
streamer branches and the electric field at the tip of long
streamer branch is relatively low.

The results obtained using the FFC model do not differ
qualitatively from the results obtained for the MESTL model
(figures 7(a) and (b), respectively). This confirms the
equivalence of these two criteria of streamer growth, which
was theoretically proved above (see also [14]). The GOT
limitation is optional and might be included in the model or
not. We believe that models with the GOT limitation give more
realistic patterns of conducting structures (figure 11), while the
regular growth criteria lead to bushy (too dense) structures.

The model proposed here with the transition of a streamer
to a highly conductive phase allows one to use a sharper
dependence of the growth probability function r(E) on the
electric field (for example, elevated values of the index n in
the power-law approximation up to 9 or formula (12)) without
any cut-off procedures. A sharper dependence of the growth
probability function reduces the branching of the growing
conducting structure.

The model of breakdown with subsequent transition of
streamers to highly conductive phase (leaders) allows one
to simulate in the first approximation the effect of charge
relaxation in contrast to the ordinary Laplace models, in which
relaxation was assumed to be complete [1–6]. The growth
rate of the total structure depends not only on the velocity of
streamer propagation but also on the rate of SL transition. In
some sense, the last process simulates in the simplest manner
the evolution of the local electric field ahead of the streamer
tips, which increases owing to gradual charge relaxation. The
delay time depends on the value of w∗. For relatively low w∗,
the delay time of streamer transition to the highly conductive
phase is small, and the model practically does not differ from
the ordinary Laplace model with a single, highly conductive,
phase.

The two-stage model of plasma behaviour (transition
of a streamer to a highly conductive phase) describes the
internal structure of the growing tree in more detail than the
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ordinary Laplace models, in which the conducting structure
was assumed to be equipotential. On the other hand, our model
is simple enough in comparison with the models of [13–15],
in which attempts were made to describe charge relaxation
directly using Ohm’s law and Poisson’s equation.

The macroscopic model with the SL transition can be
useful for computer simulations of this phenomenon and is
very promising for applications in technology. It is also very
interesting to use this approach in models based on Poisson’s
and charge transfer equations.
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