Abstract

Proton Radiography

Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over three-hundred dynamic experiments in support of national and international weapons science and stockpile stewardship programs. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

Proton Radiography Primer

Frank Merrill, LANLand the pRad collaboration

pRad Collaboration

Bechtel Nevada

Stuart Baker, Alfred Meidinger, Richard Thompson, Josh Tybo

DE-2

Robert Hixson, Paulo Rigg, Darcie Dennis-Kohler

HX-3

 Joe Bainbridge, Stephen Dennison, Eric Ferm, Robert Lopez, Mark Marr-Lyon, Carlos Montoya, Paul Rightley Wendy McNeil

LANSCE-1

Andrew Jason, Barbara Blind, Charles Mottershead

LANSCE-6

Leo Bittecker, Rodney McCrady, Chandra Pillai

P-23

 William Buttler, David D. Clark, David Holtkamp, Nick King, Kris Kwiatkowski, Kevin Morley, Russ Olson, Paul **Nedrow**

P-25

Jeffrey Bacon, Bethany Brooks, Camilo Espinoza, Gary Hogan, Brian Hollander, Julian Lopez, Fesseha Mariam, Frank Merrill, Christopher Morris, Matthew Murray, Alexander Saunders, Richard Schirato, Larry Schultz, Cynthia Schwartz, Dale Tupa

S-7

Rodger Liljestrand

X-4

Langdon Bennett, John David Becker, Maria Rightley, Stephen Sterbenz

Early Proton Radiography

Fig. 1. Proton radiograph of aluminum absorber 7 cm in diameter and 18 g/cm² thick, with an additional thickness of 0.035g/cm² aluminum foil, cut in the shape of a pennant, inserted at a depth of 9 g/cm² The addition of 0.2 percent to the total thickness produces a substantially darker area on the film.

Fig. 2. Proton flux as a function of depth in aluminum. The steeply falling portion of the curve near 18 g/cm^3 is used to obtain the high contrast of Fig. 1.

Marginal Range Radiography

- Reduce proton beam energy to near •end of range.
- \bullet Use steep portion of transmission curve to enhance sensitivity to areal density variations.
- \bullet Coulomb scattering at low energy results in poor resolution >1.5 mm.
- • Contrast generated through proton absorption.

J. A. Cookson Naturwissenschaften 61, 184-191 (1974)

Fig. 6a and b. Radiographs of leaves by a) marginal range radiography with 196 mg/cm² of extra Al absorber, and b) scattering radiography with leaf sandwiched between two 6.9 mg/cm² Al layers and 14 mm from the film

Scattering Radiography

- Edge detection only•
- Limited to thin objects•
- • Contrast generated through position dependent scattering

Los Alamos

LA-UR 08-07298

characteristic edge pattern

LANL Transmission Radiography (1995)

188 MeV secondary proton beamline at LANSCE

Magnetic Imaging Lens

Multiple Coulomb Scattering

Contrast from Multiple Coulomb Scattering

Nuclear Interactions

 Simple Approximation for Modeling Proton Radiography•Characteristic Nuclear Collision Length: λ_c •Approximate that each interaction removes the proton from the acceptance of the imaging lens.•Measure the collision Length at 800 MeV

The "true" nuclear interactions are more complicated than this simple assumption and these interactions are reasonably well understood. This can all be simulated, but it is typically not worth theeffort for designing small scale experiments.

Los Alamos

Transmission Calculation

Nuclear removal processes:

- \circledcirc_{\circ} scattering angle (radians)
- x- areal density

$$
T_{nuclear} = e^{\frac{-\theta_c^2}{2\theta_o^2}}
$$

$$
T_{MCS} = 1 - e^{\frac{-\theta_c^2}{2\theta_o^2}}
$$

$$
\theta_o = \frac{14.1 MeV}{p\beta} \sqrt{\frac{x}{x_o}}
$$

x

 λ _{α}

nuclear

 $T_{\scriptscriptstyle{nuclear}} = e^{\sqrt{-\alpha_c}}$

Multiple Coulomb Scattering with collimation:

- $\circledcirc_{\mathtt{o}}$ scattering angle (radians)
- x areal density
- x_o radiation length
- p momentum (MeV)
- *β* relativistic velocity

$$
T = e^{-\frac{x}{\lambda_c}} \left(1 - e^{-\left(\frac{\theta_c p \beta}{14.1 MeV}\right)^2 \frac{x_o}{2x}} \right)
$$

Total EstimatedTransmission: Good to 5-10%

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

s by D. E. Groom (2007). See web para entries. Quantities in parantheses are at 1 atm. Refractive indices n are Table 6.1 Abridged from pdg.1b1.gov/ktomic0luclearProperties b
this table including chemical formulae, and for several hundred other
square brackets indicate quantities evaluated at STP. Boiling points are
(589.2 nm); val

Particle Data Group:
http://pdg.lbl.gov/
A Useful Table

Los Alamos

Accurate Areal Density Reconstructions

$$
T = e^{-\left(\frac{x}{\lambda_c} + \left(\frac{\theta_c p\beta}{14.1MeV}\right)^2 \frac{x_o}{2(x + x_f)}\right)}
$$

^e Adjust parameters to fit transmission data:

 $\cdot \lambda_c$ - nuclear collision length

AAS

 $\bullet \mathsf{X}_{\mathsf{f}}$ – fixed radiation length (windows, beam angular spread)

Build a step wedge and adjust parameters to fit measured data

When is an object too thick?

Areal density contours of constant transmission as a function of atomic number.

10% is near the lower limit of reasonable transmission.

Dynamic Range of 800 MeV Proton Radigraphy

 $\bullet~$ 800 MeV proton radiography ranges from 1 g/cm 2 up to 70 g/cm 2 of iron

Los Alamos

LANSCE Experimental Areas

LA-UR 08-07298

• Los Alamos

Full LANSCE System

- •Diffuser sets illumination pattern at object.
- •Matching quads establish position-angle correlation
- •CL-0 has a 9.0 mRad collimator
- CL-1 and CL-2 can independently have 5-20 mrad collimators•
- •Lens 0 used for beam monitoring
- IL-1 has seven single-shot camera systems•
- IL-2 has five single-shot camera systems and a 9-frame framing camera•
- •21 images per dynamic event at up to 21 different times.

800 MeV pRad Facility at LANSCE

Temporal Resolution

Los Alamos ٥

Chromatic Aberration and Resolution

Identity Lens **National Contract Example 23 Magnifier**

• 12 inch lens

NASA

- <u>Station 1: 178 μm</u>
- <u>Station 2: 280 μm</u>
- Gaussian blur function.
- 120 mm field of view

Measured Transmision المعروف ووارده Fit Transmission Line Coreed Function -0.5 -0.3 -0.1 $0.1\,$ $0.3\,$ 0.5 Position (mm) 2.5 lp/mm

- 4 inch lens
- **Station 1: 65 μm** \bullet
- Gaussian blur function.
- 44 mm field of view

X7 Lens

- 1 inch lens
- Station 1: 30 μm •
- Gaussian blur function.
- 17 mm field of view

Radiographic Analysis

NNS®

Bethe-Bloch Energy Loss for 800 MeV Protons

$$
-\frac{dE}{dx} = Kz^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \left[\frac{1}{2} \ln \frac{2m_{e}c^{2} \beta^{2} \gamma^{2} T_{\text{max}}}{I^{2}} - \beta^{2} \right] \approx 1.5 \frac{MeV}{g/cm^{2}}
$$

\n
$$
K = 4\pi N_{A}r_{e}^{2}m_{e}c^{2} = 0.307 \frac{MeV}{g/cm^{2}}
$$

\n
$$
T_{\text{max}} = \frac{2m_{e}c^{2} \beta^{2} \gamma^{2}}{1 + 2\gamma m_{e}/M + (m_{e}/M)^{2}}
$$

\nC. Amster et al., Physics Letters B667, 1 (2008)
\n
$$
\frac{P-P_{f}}{P} = 8.7\%
$$

\nEocus energy
\n
$$
\frac{1}{2} \frac{P-P_{f}}{P} = 8.7\%
$$

\nEocus energy
\n
$$
\frac{1}{2} \frac{P_{\text{max}}}{P} = 8.7\%
$$

\n
$$
\frac{1}{2} \frac{P_{\text{max}}}{P} = 8.7\%
$$

\n
$$
\frac{P_{\text{max}}}{P} = 8.7\%
$$
<

LA-UR 08-07298

Los Alamos

Density Reconstruction

Invert to calculate Areal Density

$$
T = e^{-\frac{x}{\lambda_A}} \left(1 - e^{-\left(\frac{\theta_c p \beta}{14.1 \text{MeV}}\right)^2 \frac{x_o}{2x}} \right)
$$

Areal Density (g/cm2)

 Use assumption of cylindrical symmetry to determine volume density (Abel inversion)

Volume Density (g/cm³)

Multi-Frame Radiographic Movies

Resolution of Proton Radiography

- **1. Object scattering** introduced as the protons are scattered while traversing the object.
2. Chromatic aberrations-introduced as the protons pass through the magnetic lens imag
- **2. Chromatic aberrations** introduced as the protons pass through the magnetic lens imaging system.
3. Detector blur- introduced as the proton interacts with the proton-to-light converter and as the light
- **3. Detector blur** introduced as the proton interacts with the proton-to-light converter and as the light is gated and collected with a camera system.

Measurements of Object Scattering Blur

Correcting Second Order Chromatic Aberrations

Chromatic Blur— \rightarrow Limbing

Limb: To outline in clear sharp detail

Like phase-contrast radiography:

- Useful to enhance edges
- Problem for density reconstruction

Resolution proportional to energy offset

$$
\sigma = \theta l_c \frac{E - E_f}{E_f}
$$

Example: Focused on high energy protons

800 MeV x3 Magnifying Imaging Lens

NNS®

LA-UR 08-07298

Solid-Solid Phase Transition in Iron

Dramatic Improvement in Resolution is allowing us to make new measurements like this solid-solid phase transition in iron. We are performing experiments with the magnifier to study solid-solid phase transitions in cerium this week.

copper

Resolution improvement equivalent to an energy increase from 800 MeV to 2 GeV (in terms of chromatic blur)

Material Strength Experiments

Material Strength Experiments

Powder Gun Driven Equation Of State Measurements

Aluminum

Solid-Solid Phase Transitions in Iron

pRad has been used to study the failure of materials driven by point detonated high explosives

- • Experiments were aimed at extending VISAR measurements below the leading spall layer.
- Proton radiographs reveal that the deepest damage •layers are not well defined.
- Multiple pRad experiments show that damage •formation deep within the metal is "statistical" in nature and dependent on metal.

A comparison of spall for different materials

Complicated Studies of HE Burn Products

NNS®

Studies of HE Burn Products

· Los Alamos

Evolution of Spall Damage

Incipient Spall with Recovery Experiments

NASS

Dynamic Radiograph

0.8 cm

- How do they coalesce to form •macroscopic damage?
- Requires improvements in •resolution.

Few Hertz Radiographic Movies

- <5 Hz Frame Rate
- 1000 Frame limit

Summary

- 800 MeV proton radiography continues to provide high quality dynamic materials studies for LANL.
- Gains in resolution have been realized through the development of magnifying lens systems.
- • Interest at Los Alamos to build a user community foraccess to 800 MeV proton radiography.
- We will be looking for user experiments in the 2008 run cycle (June-December).

