

Синхротронное излучение в экспериментальной физике взрыва

К.А. Тен, Э.Р. Прууэл, А.О. Кашкаров, И.А. Рубцов, Б.П. Толочко, И.Л. Шехтман, В.М. Аульченко pru@hydro.nsc.ru, http://ancient.hydro.nsc.ru/srexpl

Институт гидродинамики им. М.А. Лаврентьева СО РАН, Институт ядерной физики им. Г.И. Будкера СО РАН, Институт химии твердого тела и механохимии СО РАН, Сибирский центр синхротронного и террагерцового излучения

Основные параметры детонационного течения

Скоростная рентгенография

Взрывная камера для съёмки кумулятивных струй с тремя ПИР-600 и СФР в подвале главного корпуса Института гидродинамики.

Металлическая струя от кумулятивного заряда после преодоления стальной стенки. Скорость головы струи — 6 километров в секунду. Видна пелена из осколков, внедрение фрагментов пелены в стенку трубы (внизу).

Рентгенограмма запреградного облака осколков, образующегося при ударе 9-мм шарика из алюминия со скоростью 6,7 км/с по 1,5-мм пластинке из алюминия (интервал между кадрами – 15 мкс)

Современные методы исследования динамических процессов

- Контактные датчики.
- Современные реализации традиционных методов генерации рентгеновского излучения.
- Velocity Interferometer System for Any Reflector (VISAR).
- Протонография.
- Методы диагностики синхротронным излучением.

Центры по исследованию динамических процессов пучками различной природы.

Протонография динамических процессов

Протонная радиографическая установка на 70 ГэВ ускорителе ГНЦ ИФВЭ (г. Протвино). Установка позволяет получать изображение объектов с оптической толщиной свыше 300 г/см2. Оптическое разрешение установки составляет 0.25 мм.

Схема экспериментов и фотографии 2-х станций (ВЭПП-3 и ВЭПП-4)

2019 г. Взрывная камера на 50 г. Время между кадрами 124 нс. Е_{еf} = 20 кэВ.

1999 — 2019 г. Взрывная камера на 20 г Время между кадрами 500 нс.

2013 г. Взрывная камера на 200 г. Время между кадрами 150-600 нс. Е_{еf} = 40 кэВ.

Характеристики специализированного детектора (DIMEX)

Внешний вид детектора DIMEX-3. Шаг полозковой структуры – 100 мкм, количество пространственных каналов – 512, количество кадров по времени – 32, минимальное время между кадрами – 125 нс.

Квантовая эффективность детектора от энергии фотонов при разных давлениях газа.

Восстановление газодинамических параметров течения: плотности, давления и массовой скорости

Уравнения газовой динамики для течения с цилиндрической симметрией

$$\frac{\partial r\rho u}{\partial r} + \frac{\partial r\rho v}{\partial z} = \frac{\partial r\rho}{\partial t},$$
$$\frac{\partial r\rho u^{2}}{\partial r} + \frac{\partial r\rho uv}{\partial z} + r\frac{\partial p}{\partial r} = \frac{\partial r\rho u}{\partial t},$$
$$\frac{\partial r\rho v^{2}}{\partial z} + \frac{\partial r\rho uv}{\partial r} + r\frac{\partial p}{\partial z} = \frac{\partial r\rho v}{\triangleright \partial t},$$
$$p(\rho) = p_{0}(\rho/\rho_{00})^{\gamma(\rho)}.$$

ү(*р*) - искомая зависимость показателя адиабаты вдоль линии тока.

Задача решается численно методом Годунова, в Лагражевых координатах, распады разрывов считались в акустическом приближение. Характерное количество "подгоночных" параметров 10, характерное количество расчетов течения 10³-10⁴.

Параметры течения при детонации заряда ТАТБ

Измерение МУРР при детонации ВВ

Желтая стрелка – падающий пучок СИ, фиолетовый конус – рентгеновское рассеяние на углеродных наночастицах.

Изменение интегральной интенсивности от времени при детонации ряда ВВ: В – ТГ70/30, С – ТГ50/50, D – THT (ρ = 1,6), Е - ТГ60/40, F -

гексоген

БТΦ

Попытки расшифровки структуры и формы наноуглеродных структур

Детонационный наноуглерод.

МУРР от детонационного наноуглерода. Статический эксперимент.

Определение параметров углеродных структур

$$\gamma(0) V_0 = \int_V \Delta \rho^2(\vec{r}) dV \propto \int_0^{\infty} I(q) q^2 dq$$

$$I(q) = I_0 \exp((-q^2 R_g^2 / 3))$$

Интеграл по углам МУРР – полная масса конденсированной фазы в исследуемом объеме. Нет информации о форме частиц их размере Соотношение Guinea – "средний" размер частиц.

Динамика **МУРР** при детонации ряда **ВВ**

Угловая зависимость МУРР при детонации ТГ50/50 (слева) и БТФ (справа). Линии разного цвета обозначают кадры МУРР, записанные с интервалом 0.5 мкс. Кадр С10 соответствует прохождению фронта детонации. Угол приведен в каналах детектора.

Динамика МУРР и размеров наночастиц

Thank_you for your attention!

> Благодарю за внимание!